Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrozellen sollen sich selbst zusammensetzen und chemische Reaktionen dirigieren

29.08.2012
Wenn Elektronik sich wie Mikroorganismen benimmt
3,4 Millionen Euro aus EU-Förderprogramm für internationales Forschungsvorhaben

Der erste Platz in einer hochkompetitiven EU-Ausschreibung zum Thema „Unconventional Computing“ ging an das Kooperationsprojekt „MICREAgents“ unter Federführung von RUB-Professor John McCaskill von der Fakultät für Chemie und Biochemie.


MICREAgent lablets: Die intelligenten künstlichen Zellen sind mit autonomer Elektronik ausgestattet. Sie setzen sich selbst zusammen, um als Paare („gemlabs“ oder „Zwillings-lablets“) mikroskopische chemische Reaktoren zu bilden. Sie können dann Information und Chemikalien miteinander oder an einer dafür vorgesehenen Andockoberfläche austauschen.

Copyright: John McCaskill

Die Forscher wollen autonome elektronische Mikroreagenzien entwickeln, die kaum größer als lebende Zellen sind und sich selbst zusammensetzen. Die intelligenten Mikrozellen werden in wässrige Lösungen gegeben, wo sie chemische und elektronische Information austauschen, um gemeinsam komplexe chemische Reaktionen oder Analysen auszuführen – ganz nach dem Motto „berechnen gleich konstruieren“.

Die Technik könnte zum Beispiel in der „Point-of-Care“-Diagnostik, etwa für medizinische Schnelltests, oder zur Synthese von Nanopartikeln eingesetzt werden. Die EU fördert das Forschungsvorhaben im FP7-Programm mit 3,4 Millionen Euro für drei Jahre. Vier Forschergruppen der RUB kooperieren mit Wissenschaftlern von fünf anderen europäischen Universitäten sowie aus Israel und Neuseeland.

Mikro-„Agenten“, die sich selbst zusammensetzen und kommunizieren
Ziel des Projekts ist es, programmierbare elektronische Chemie auf der Mikroskala zu schaffen. Dafür stellen die Forscher sogenannte „lablets“ her, Einheiten mit elektronischen Schaltkreisen auf 3D-Mikrochips, die sich zu MICREAgents (Microscopic Chemically Reactive Electronic Agents) zusammensetzen. Die lablets haben einen Durchmesser von weniger als 100 µm und finden sich selbstständig zu Paaren oder größeren Gruppen zusammen, um dynamische Reaktionskammern zu bilden. Mit ihrer Elektronik kontrollieren sie chemische Prozesse in ihrer unmittelbaren Umgebung, ähnlich wie die genetische Information in Zellen die lokalen chemischen Vorgänge kontrolliert: Sie können Chemikalien selektiv konzentrieren, verarbeiten und wieder in die Lösung abgeben. Der paarweise Zusammenschluss ist reversibel; er erlaubt, Informationen von einem lablet zum anderen zu transferieren.

Elektronische Signale in chemische Prozesse übersetzen

Die lablets sollen Transistoren, Superkondensatoren, Energiewandler und Sensoren enthalten sowie Aktuatoren für die lablet-Trennung und den Chemikalienaustausch. Diese Ausstattung erlaubt es ihnen, elektronische Signale in chemische Konstruktionsprozesse zu übersetzen und die Ergebnisse der Prozesse aufzuzeichnen. Die Chemikalien sind also nicht in einem Reaktor, der die Verarbeitung von außen steuert. Stattdessen werden die intelligenten MICREAgents in die Mixtur aus Chemikalien gegossen und organisieren die chemischen Reaktionen aus dem Inneren heraus.
Berechnungen sind mit Konstruktionsprozessen verwoben

Die intelligenten Mikroreagenzien können zum Beispiel für die Vervielfältigung von Molekülen programmiert werden, oder für andere chemische Prozesse, die aus komplexen Gemischen Chemikalien konzentrieren oder aufreinigen. Sie können Reaktionen in Kaskaden durchführen, detektieren, wann Reaktionen abgeschlossen sind, Produkte transportieren und an bestimmten Orten absetzen. Es handelt sich um einen neuen Weg, Berechnungen und Konstruktion zu verknüpfen. MICREAgents setzen sich nicht nur selbst zusammen, sie sind auch fähig zur Evolution. Damit gehen sie sogar noch über John von Neumanns universelle Konstruktionsmaschine hinaus, die komplexere Maschinen als sich selbst herstellen sollte. Obwohl die nanostrukturierten Einheiten schon bald in der Lage sein werden, ihre chemische und elektronische Information zu replizieren, besteht nicht die Gefahr, dass sie sich unkontrolliert in der Umwelt ausbreiten. Denn ihre Funktion ist abhängig von einem durch uns hergestellten komplexen elektronischen Substrat.

Projektpartner aus der RUB

Prof. Dr. John S. McCaskill (Microsystems Chemistry and Biological Information Technology) arbeitet zusammen mit Prof. Dr. Günter von Kiedrowski (Bioorganische Chemie), Prof. Dr. Jürgen Oehm (Analoge Integrierte Schaltungen) und Dr. Pierre Mayr (Integrierte Systeme). Die Gruppen von Prof. McCaskill und Prof. von Kiedrowski haben schon früher in EU-Projekten kooperiert, um künstliche Zellen zu erforschen. „ECCell“, das im Februar 2012 auslief, legte die Basis für elektrochemische Zellen. In diesem Projekt umgab die Elektronik die Chemie; in MICREAgents drehen die Forscher dieses Verhältnis um: Autonome elektronische Teilchen berechnen chemische Reaktionen.

Weitere Informationen

Prof. Dr. John S. McCaskill, BioMIP: Microsystems Chemistry and BioIT, Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-27702
john.mccaskill@rub.de

Angeklickt

Ausführliche Projektbeschreibung (englisch)
http://aktuell.ruhr-uni-bochum.de/mam/content/projektbeschreibung_micreagents.pdf

BioMIP at RUB
http://homepage.ruhr-uni-bochum.de/john.mccaskill/BioMIP/

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie