Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrozellen sollen sich selbst zusammensetzen und chemische Reaktionen dirigieren

29.08.2012
Wenn Elektronik sich wie Mikroorganismen benimmt
3,4 Millionen Euro aus EU-Förderprogramm für internationales Forschungsvorhaben

Der erste Platz in einer hochkompetitiven EU-Ausschreibung zum Thema „Unconventional Computing“ ging an das Kooperationsprojekt „MICREAgents“ unter Federführung von RUB-Professor John McCaskill von der Fakultät für Chemie und Biochemie.


MICREAgent lablets: Die intelligenten künstlichen Zellen sind mit autonomer Elektronik ausgestattet. Sie setzen sich selbst zusammen, um als Paare („gemlabs“ oder „Zwillings-lablets“) mikroskopische chemische Reaktoren zu bilden. Sie können dann Information und Chemikalien miteinander oder an einer dafür vorgesehenen Andockoberfläche austauschen.

Copyright: John McCaskill

Die Forscher wollen autonome elektronische Mikroreagenzien entwickeln, die kaum größer als lebende Zellen sind und sich selbst zusammensetzen. Die intelligenten Mikrozellen werden in wässrige Lösungen gegeben, wo sie chemische und elektronische Information austauschen, um gemeinsam komplexe chemische Reaktionen oder Analysen auszuführen – ganz nach dem Motto „berechnen gleich konstruieren“.

Die Technik könnte zum Beispiel in der „Point-of-Care“-Diagnostik, etwa für medizinische Schnelltests, oder zur Synthese von Nanopartikeln eingesetzt werden. Die EU fördert das Forschungsvorhaben im FP7-Programm mit 3,4 Millionen Euro für drei Jahre. Vier Forschergruppen der RUB kooperieren mit Wissenschaftlern von fünf anderen europäischen Universitäten sowie aus Israel und Neuseeland.

Mikro-„Agenten“, die sich selbst zusammensetzen und kommunizieren
Ziel des Projekts ist es, programmierbare elektronische Chemie auf der Mikroskala zu schaffen. Dafür stellen die Forscher sogenannte „lablets“ her, Einheiten mit elektronischen Schaltkreisen auf 3D-Mikrochips, die sich zu MICREAgents (Microscopic Chemically Reactive Electronic Agents) zusammensetzen. Die lablets haben einen Durchmesser von weniger als 100 µm und finden sich selbstständig zu Paaren oder größeren Gruppen zusammen, um dynamische Reaktionskammern zu bilden. Mit ihrer Elektronik kontrollieren sie chemische Prozesse in ihrer unmittelbaren Umgebung, ähnlich wie die genetische Information in Zellen die lokalen chemischen Vorgänge kontrolliert: Sie können Chemikalien selektiv konzentrieren, verarbeiten und wieder in die Lösung abgeben. Der paarweise Zusammenschluss ist reversibel; er erlaubt, Informationen von einem lablet zum anderen zu transferieren.

Elektronische Signale in chemische Prozesse übersetzen

Die lablets sollen Transistoren, Superkondensatoren, Energiewandler und Sensoren enthalten sowie Aktuatoren für die lablet-Trennung und den Chemikalienaustausch. Diese Ausstattung erlaubt es ihnen, elektronische Signale in chemische Konstruktionsprozesse zu übersetzen und die Ergebnisse der Prozesse aufzuzeichnen. Die Chemikalien sind also nicht in einem Reaktor, der die Verarbeitung von außen steuert. Stattdessen werden die intelligenten MICREAgents in die Mixtur aus Chemikalien gegossen und organisieren die chemischen Reaktionen aus dem Inneren heraus.
Berechnungen sind mit Konstruktionsprozessen verwoben

Die intelligenten Mikroreagenzien können zum Beispiel für die Vervielfältigung von Molekülen programmiert werden, oder für andere chemische Prozesse, die aus komplexen Gemischen Chemikalien konzentrieren oder aufreinigen. Sie können Reaktionen in Kaskaden durchführen, detektieren, wann Reaktionen abgeschlossen sind, Produkte transportieren und an bestimmten Orten absetzen. Es handelt sich um einen neuen Weg, Berechnungen und Konstruktion zu verknüpfen. MICREAgents setzen sich nicht nur selbst zusammen, sie sind auch fähig zur Evolution. Damit gehen sie sogar noch über John von Neumanns universelle Konstruktionsmaschine hinaus, die komplexere Maschinen als sich selbst herstellen sollte. Obwohl die nanostrukturierten Einheiten schon bald in der Lage sein werden, ihre chemische und elektronische Information zu replizieren, besteht nicht die Gefahr, dass sie sich unkontrolliert in der Umwelt ausbreiten. Denn ihre Funktion ist abhängig von einem durch uns hergestellten komplexen elektronischen Substrat.

Projektpartner aus der RUB

Prof. Dr. John S. McCaskill (Microsystems Chemistry and Biological Information Technology) arbeitet zusammen mit Prof. Dr. Günter von Kiedrowski (Bioorganische Chemie), Prof. Dr. Jürgen Oehm (Analoge Integrierte Schaltungen) und Dr. Pierre Mayr (Integrierte Systeme). Die Gruppen von Prof. McCaskill und Prof. von Kiedrowski haben schon früher in EU-Projekten kooperiert, um künstliche Zellen zu erforschen. „ECCell“, das im Februar 2012 auslief, legte die Basis für elektrochemische Zellen. In diesem Projekt umgab die Elektronik die Chemie; in MICREAgents drehen die Forscher dieses Verhältnis um: Autonome elektronische Teilchen berechnen chemische Reaktionen.

Weitere Informationen

Prof. Dr. John S. McCaskill, BioMIP: Microsystems Chemistry and BioIT, Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-27702
john.mccaskill@rub.de

Angeklickt

Ausführliche Projektbeschreibung (englisch)
http://aktuell.ruhr-uni-bochum.de/mam/content/projektbeschreibung_micreagents.pdf

BioMIP at RUB
http://homepage.ruhr-uni-bochum.de/john.mccaskill/BioMIP/

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kompositmaterial für die Wasseraufbereitung
18.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magnetische Kraft von einzelnen Antiprotonen mit höchster Genauigkeit bestimmt

18.01.2017 | Physik Astronomie

Löschwasser mobil und kosteneffizient reinigen

18.01.2017 | Verfahrenstechnologie

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungsnachrichten