Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrospinne

02.09.2011
Polymerisationsreaktion treibt Mikromotoren an

Noch ist es Science Fiction, aber vielleicht in absehbarer Zukunft Realität: Nanoroboter, die im Körper Tumorzellen zerstören und Verstopfungen aus unseren Arterien kratzen oder mikroskopisch kleine „Fabriken“, in denen Nanomaschinen winzige Strukturen für miniaturisierte Bauteile herstellen.


Mikromotor aus einer halb aus Gold, halb aus Siliciumdioxid bestehenden Kugel (c) Wiley-VCH

Nanomotoren könnten Pharmaka rascher zu bestimmten Zielorganen transportieren oder Analytmoleküle durch die winzigen Kanäle von Diagnostiksystemen im Mikrochipformat lotsen. Ayusman Sen und seine Mitarbeiter von der Pennsylvania State University (USA) beschreiben in der Zeitschrift Angewandte Chemie nun einen neuen Typ Mikromotor, der durch eine Polymerisationsreaktion angetrieben wird und wie eine Mikrospinne feine Fäden hinterlässt.

Die Motoren bestehen aus knapp einen Mikrometer großen Kügelchen, halb aus Gold, halb aus Siliciumdioxid. Auf der Siliciumdioxid-Oberfläche lassen sich Katalysatormoleküle (ein so genannter Grubbs-Katalysator) anknüpfen, die Polymerisationen katalysieren. Sen und sein Team verwenden Norbornen als Monomer. Unter Ringöffnung reiht der Katalysator diese Monomere zu langen Kettenmolekülen aneinander.

Sobald die Reaktion anläuft, kommen die Kügelchen in der umgebenden Flüssigkeit ordentlich in Fahrt. Aber wie kann eine solche Reaktion eine Bewegung hervorrufen? Erfolgsgeheimnis sind die zwei unterschiedlichen Hälften der Kügelchen. Nur auf der Seite, auf der die Katalysatormoleküle sitzen, wird Monomer verbraucht. Die Monomerkonzentration nimmt ab und wird hier geringer als um die katalysatorfreie Goldhälfte herum. Diese Konzentrationsunterschiede erzeugen einen osmotischen Druck, der einen winzigen Strom von Lösungsmittelmolekülen in Richtung der Stellen mit höherer Monomerkonzentration hervorruft, also in Richtung Goldhälfte. Diese Mini-Strömung treibt den kleinen Motor in die entgegengesetzte Richtung.

Körperzellen, beispielsweise in der Embryogenese, und bestimmte einzellige Lebewesen können Konzentrationsgradienten von Botenstoffen oder Nährstoffen folgen, ein Phänomen, das man Chemotaxis nennt. Zu einer solch gerichteten Bewegung sind auch die neuen kleinen Motoren fähig. Die Wissenschaftler verwendeten mit Norbornen gefüllte Gele, aus denen das Norbornen-Monomer langsam heraussickerte. Die Mikromotoren „spüren“ dies und bewegen sich auf das Gel zu, folgen also wie Einzeller einem Nährstoffgradienten. Der Grund liegt darin, dass die Polymerisation umso rascher läuft, je mehr Monomer sich in der Nähe des Katalysators befindet. Umso stärker wird aber auch die lokale Strömung, die das Kügelchen antreibt.

Es ist also möglich, die Mikromotoren auf ein Ziel hin zu lenken. In einem Lösungsmittel, in dem das entstehende Polymer unlöslich ist, könnte dieses entlang der zurückgelegten Strecke abgelagert werden – wie eine Mikrospinne, die ein Netz webt. Die Mikromotoren könnten auch so ausgelegt werden, dass sie Fehlstellen und Risse detektieren, sich dorthin bewegen und diese mit Polymer verschließen.

Angewandte Chemie: Presseinfo 34/2011

Autor: Ayusman Sen, Pennsylvania State University, University Park (USA), http://research.chem.psu.edu/axsgroup/dr_sen.html

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201103565

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften