Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikropropeller und Mikropinzetten aus weichen Gelen

22.11.2016

Dass in Aachen große Maschinen und Roboter gebaut werden, ist allgemein bekannt. Allerdings entstehen hier auch winzige Roboterstrukturen, die nur den Bruchteil eines Millimeters groß sind. Das Team um den Polymerchemiker Prof. Dr. Martin Möller, Direktor des DWI – Leibniz-Institut für Interaktive Materialien und Professor für Textilchemie und Makromolekulare Chemie an der RWTH Aachen, entwickelt Gel-Strukturen, die sich wie kleine Roboter selbstständig im Wasser bewegen können. Die dafür nötige Energie beziehen diese sogenannten ‚Mikroschwimmer‘ aus Lichtimpulsen. In der Fachzeitschrift ‚Advanced Materials‘ machen die Wissenschaftler nun auf ihre bemerkenswerten Gel-Objekte aufmerksam.

Mikroorganismen und natürliche Zellen haben ganz unterschiedliche Mechanismen der Bewegung und Fortbewegung entwickelt, die eine Grundlage für viele Vorgänge in unserem Körper und in der Umwelt bilden.


Doktorand Hang Zhang steht vor dem Mikroskop, mit dem er winzige Gel-Strukturen untersucht, die sich wie kleine Roboter selbstständig im Wasser bewegen können.

Bildquelle: Philipp Scheffler, DWI

Ausgehend von den Eigenschaften natürlicher ‚Schwimmer‘ lässt sich ein breites Spektrum an Anwendungen für künstliche Mikroschwimmer erahnen. Es reicht von medizinischen Anwendungen über die Materialwissenschaften bis hin zu den Umweltwissenschaften. Die Entwicklung künstlicher Mikroschwimmer gewinnt daher als Forschungsfeld zunehmend an Bedeutung.

Die Aufgabe, welcher sich die Aachener Wissenschaftler sich in diesem Zusammenhang annahmen, war alles andere als trivial: „Wir wollten ein Bewegungsprinzip entwickeln, das sich auch bei beliebig kleinen Objekten umsetzen lässt“, so Dr. Ahmed Mourran, Projektleiter am DWI.

Doktorand Hang Zhang ergänzt: „Außerdem sollte die Bewegung nicht an externe Gradienten, beispielsweise Temperaturunterschiede oder Konzentrationsunterschiede in der Umgebung gebunden sein. Das ist bei vielen bisher entwickelten Mikroschwimmern der Fall und schränkt ihre Bewegungsmöglichkeiten ein.“

Im Rahmen eines von der Deutschen Forschungsgemeinschaft geförderten Projektes gelang es den Forschern, diese Herausforderung zu meistern. Die Materialexperten entwickelten Gel-Objekte, die einfache Bewegungen in Wasser ausführen können.

Beispiele sind ein Mikropropeller, der sich im Wasser schnell um die eigene Achse dreht, und ein L-förmiges Gel mit langen Armen, die wie eine Pinzette zusammenschnappen und öffnen können. Besonders faszinierend wirkt eine rotierende Helix, die an einer Wand entlang ‚laufen‘ kann.

Die Forscher setzten für die Entwicklung ihrer Mikroschwimmer schwammartige, elastische Gelkörper ein, die zu 80 bis 98 Prozent aus Wasser bestehen. Ein solcher Gelpartikel kann durch Aufnahme oder Abgabe von Wasser seine Form erheblich verändern. Diese Formveränderungen können die Wissenschaftler über die Dauer von Infrarotlicht-Pulsen steuern.

Das Licht wird von winzigen Gold-Stäbchen (Gold-Nanostäbchen), die in die Gele eingebaut sind, in Wärme umgewandelt und an das umliegende Gel abgegeben. Die so bewirkte schlagartige Erwärmung des Gels führt zu einer Schnappbewegung. Doch genau so schnell, wie sich die Gele erwärmen, kühlen sie auch wieder ab.

Die Schnappbewegung ist durch die Ausgangsform des Gels und die durch das Licht erzeugten Temperatursprünge vorgegeben, auf die eine etwas langsamere Formveränderung des Gels folgt. Mit Hilfe von stroboskopischen Infrarotlicht-Pulsen können die Wissenschaftler schnelle, wiederkehrende Bewegungssequenzen erzeugen.

Diese per Infrarotlicht bewegten Gele reagieren empfindlich auf Fremdstoffe und könnten zukünftig als Sensoren oder Pumpen sowie für die Trennung oder den Transport von Flüssigkeiten in feinsten Kapillaren genutzt werden. Da Infrarotlicht tief in körpereigenes Gewebe eindringt, könnten die Gele darüber hinaus eine Grundlage für neue medizintechnische Anwendungen bilden.

Im Rahmen seines ‚ERC Advanced Grant‘ des Europäischen Forschungsrats möchte Martin Möller diese Mikroschwimmer nun so weiterentwickeln, dass sie auch bei konstanter Bestrahlung mit Infrarotlicht einzelne, sich wiederholende Bewegungen ausführen können, die insgesamt einen Bewegungsfluss ergeben.

Weitere Informationen:

http://Bildmaterial in höherer Auflösung:
https://gigamove.rz.rwth-aachen.de/d/id/AfEihzopuceURm

Dr. Janine Hillmer | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics