Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikroorganismen - die größten Chemiker

04.02.2010
Mikroorganismen sind die größten Chemiker auf unserem Planeten, denn sie können (fast) jede thermodynamisch mögliche chemische Reaktion für ihre Lebenserhaltung und ihr Wachstum nutzen.

Ihr gemeinsames Wirken ermöglicht die biogeochemischen Stoffkreisläufe. Betrachtet man ihre gesamte Stoffwechselleistung, wird deutlich, dass sie den komplexen globalen Kreislauf der Elemente, und damit die Basis allen Lebens in Schwung halten. Man schätzt, dass ca. 10 hoch 30 Einzeller und zehnmal mehr Viren dieses globale mikrobielle Netzwerk bilden. Im Vergleich liegt die Zahl von 10 hoch 23 hoch Sternen im Universum deutlich darunter.

Will man diese biologischen Mechanismen verstehen, muss man die Genome der Organismen analysieren. Mikrobielle Gemeinschaften bestehen jedoch aus einer Vielzahl verschiedener Arten. Ähnlich wie bei einer Volkszählung ist es hilfreich, sich zunächst einen Überblick zu verschaffen und Summenparameter zu erfassen. Diese Metagenome repräsentieren die Summe aller bakteriellen Genome in einer Probe und mit Hilfe von biomathematischen Methoden wie der Metagenomik kann man Teile oder sogar komplette Einzelgenome rekonstruieren.

Die Analyse des Metagenoms - sozusagen ein molekularer "Schnappschuss" der mikrobiellen Gemeinschaften- ist ernüchternd und macht deutlich, dass wir noch "Lichtjahre" davon entfernt sind, die grundlegenden Feedback-Mechanismen zwischen Umwelt und Mikroorganismen auf der Ebene der Moleküle zu verstehen. Das ist bedauerlich, denn dieses Wissen ist nicht nur für die Grundlagenforschung relevant, sondern auch für die Industrie und Wirtschaft. Als Beispiele sind die Optimierung von Bioprozessen und die Klimaforschung zu nennen.

In diesem Themenfeld entwickelte sich in den letzten zwei Jahren die Kooperation zwischen dem Zentrum für Biotechnologie an der Universität Bielefeld und dem Bremer Max-Planck-Institut für Marine Mikrobiologie. Mit ausschlaggebend war, dass die beiden Institutionen sich mit ihrem jeweiligen Know-How gut ergänzen: Metagenomik und industrielle Biotechnologie aus Bielefeld treffen auf Umweltmikrobiologie und (Bio-)Geochemie aus Bremen.

So untersucht die in Bielefeld ansässige Nachwuchsgruppe "Nachhaltige Energieproduktion" unter der Leitung von Professor Olaf Kruse in einer Machbarkeitsstudie die Erzeugung von Methan mit Hilfe von Sonnenenergie in Hinsicht auf Wirtschaftlichkeit in Anbetracht der momentanen Preise für fossile Brennstoffe. Die industrielle Nutzung der Sonnenenergie kommt hauptsächlich in der Produktion von Strom oder Wasserstoffgas zum Einsatz. Als industrielle Methanquellen kommen bislang organische Abfälle aus der Landwirtschaft und spezielle Pflanzensorten in Betracht. Allerdings ist die Wasserstofftechnologie noch weit von einer effektiven Umsetzung entfernt und die Biotreibstoffproduktion kann nur einen Bruchteil der benötigten fossilen Brennstoffe ersetzen. Für das gasförmige Methan jedoch kann die bestehende Infrastruktur (Erdgasnetz) zum Einsatz kommen. Auch verschiedene Verfahren zur Fixierung des atmosphärischen Kohlendioxids als Ausgangsstoff zur Synthese des energiereichen Methans sind etabliert. Das Ziel der Forschergruppe "Nachhaltige Energieproduktion" ist es, diesen Syntheseschritt, die Bildung von Methan aus Kohlendioxid im alkalischen Milieu als Verfahren zu optimieren. Der Start für die industrielle Anwendung ist für 2015 geplant.

Im Bremer Max-Planck-Institut für Marine Mikrobiologie arbeitet die Max-Planck-Forschungsgruppe "Mikrobielle Fitness" um Marc Strous daran, den Einfluss von Stickstoffdüngung auf den Kohlenstoffkreislauf zu untersuchen. Ziel ist es, diese Wechselwirkung quantitativ zu erfassen und mit Hilfe von mathematischen Modellierungsverfahren Vorhersagen treffen zu können. Stickstoff ist Grundlage allen Lebens und spielt in Form von Nitrat eine Schlüsselrolle in den wichtigsten geochemischen Stoffkreisläufen. Diese Verbindung kann als Quelle von Stickstoff oder als Elektronenakzeptor in der anaeroben Atmung dienen. Das Vorkommen von Stickstoffverbindungen in der Umwelt wird maßgeblich durch die Aktivitäten der menschlichen Zivilisation bestimmt. Heutzutage stammt jedes dritte Stickstoffatom in der Biosphäre aus der Düngemittelindustrie. Mit modernen Kläranlagen versucht man, diese unerwünschten Stickstoffverbindungen aus den Abwässern in Form von gasförmigem Stickstoff zu entfernen. Zwar kennt man den direkten Einfluss der Stickstoffdünger auf den globalen Kohlendioxidhaushalt der Atmosphäre noch nicht genau, aber diese Düngemittel setzen unter sauerstoffarmen Bedingungen große Mengen an Lachgas, einem starken Treibhausgas, frei. Es ist auch noch nicht geklärt, wie die Umwelt die Produktion von Lachgas beeinflusst.

Die Bremer Gruppe um Marc Strous bekommt jetzt vom Europäischen Forschungsrat ERC eine Forschungsförderung in Höhe 1,7 Millionen Euro, die den Etat der Gruppe damit verdoppelt. Inzwischen arbeiten zehn Forscher in Bremen und Bielefeld gemeinsam an diesem Projekt.

Ihr wissenschaftlicher Ansatz bezieht sich auf die natürliche Auslese von konkurrierenden Mikroorganismen in besonders isolierten Bioreaktoren unter kontrollierten Bedingungen. Hochempfindliche Temperaturfühler verfolgen die Wärmeabgabe der Reaktoren und geben so Aufschluss über die thermodynamische Effizienz der jeweiligen konkurrierenden Bakterienstämme. Metagenomanalysen zeigen an, welche Stämme "das Rennen machen". Arbeitsgruppenleiter Marc Strous plant mit diesem Ansatz, ein prädiktives thermodynamisches Modell zu entwickeln und neue metagenomische Marker zu erhalten. Dieses Konzept soll dann an mikrobiellen Gemeinschaften in der Natur, aber auch bei der Optimierung von biotechnologischen Anwendungen wie der Methanproduktion aus Wasserstoff und der Entfernung von Stickstoff aus Abwässern zum Einsatz kommen.

Das experimentelle Konzept der Bioreaktoren mit hochauflösender Kalorimetrie steht kurz vor dem Einsatz. Die meisten dieser Experimente werden in Bremen erfolgen, die DNA-Sequenzierung und die Metagenomik in Bielefeld.

Dr. Manfred Schloesser | idw
Weitere Informationen:
http://www.mpi-bremen.de
http://www.cebitec.uni-bielefeld.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten