Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrobielle Lebensgemeinschaft in der Pflanzenwurzel

03.08.2012
Pflanzen wählen sehr gezielt aus, welchen Bodenbakterien sie Zutritt zur Wurzel gewähren

Der Erdboden ist das artenreichste mikrobielle Ökosystem der Welt. Aus dieser unglaublichen Vielfalt an Mikroorganismen wählen Pflanzen gewisse Arten gezielt aus, gewähren ihnen Zutritt zur Wurzel und beherbergen damit eine einzigartige, sorgfältig verlesene Lebensgemeinschaft, von der sie dann auf unterschiedliche Weise profitieren.


Mikroskop-Aufnahme einer Wurzel der Ackerschmalwand mit eingedrungenen Bakterien (grün). © MPI f. Pflanzenzüchtungsforschung

Das pflanzliche Immunsystem muss dabei unterscheiden können, welche Bakterien ihnen Freund und welche ihnen Feind sind. Forscher vom Max-Planck-Institut für Pflanzenzüchtungsforschung in Köln und vom Max-Planck-Institut für marine Mikrobiologie in Bremen haben jetzt herausgefunden, dass die Modellpflanze Arabidopsis bevorzugt drei Abteilungen von Bakterien in ihre Wurzeln aufnimmt: Actinobakterien, Proteobakterien und Bacteroidetes. Diese mikrobielle Lebensgemeinschaft hängt von Bodentyp und Genotyp der Pflanze ab.

Die Wissenschaftler haben mit ihrer Untersuchung Neuland in den Pflanzenwissenschaften betreten. Die Bedeutung mikrobieller Lebensgemeinschaften wird erst seit einigen Jahren systematisch erforscht. Auch der Mensch trägt mehr Mikroorganismen in sich als Zellen, so dass man eigentlich jedes Lebewesen als Metaorganismus betrachten muss. Schulze-Lefert und seine Kollegen haben jetzt einen ersten groben Zensus für die Arabidopsis-Wurzel vorgelegt und 43 Abteilungen von Bakterien in unterschiedlicher Menge nachgewiesen. Demzufolge wählt Arabidopsis seine Wurzelbewohner sehr gezielt aus der vorhandenen Fülle an Mikroorganismen im Erdreich aus.

Schulze-Lefert und seine Kollegen haben für ihren Zensus drei Lebensräume untersucht: das Wurzelgewebe mit den dort ansässigen Bakterien, die unmittelbar an die Wurzel angrenzende Rhizosphäre und das nicht bepflanzte Erdreich in der Umgebung der Testpflanzen. „In den Wurzeln kommen vor allem drei große Abteilungen von Bakterien vor“, sagt Schulze-Lefert. „Das sind Proteobakterien, Bakteroideten und Actinobakterien und jeder dieser Abteilungen ist dort mit einer dominierenden Klasse oder Familie vertreten. Auch die Art des Erdreichs und der Genotyp der jeweiligen Arabidopsis Pflanze haben offensichtlich einen Einfluss darauf, welche Bakterien in die Wurzeln aufgenommen werden.“

Die Forscher haben die Testpflanzen entweder in dem lehm- und schlickhaltigem Erdreich der Kölner Bucht angezogen oder in dem sandigen Boden aus der brandenburgischen Fluss- und Seenlandschaft bei Golm. Außerdem haben sie zwei verschiedene Ökotypen von Arabidopsis untersucht, die jeweils an einen ganz bestimmten Standort angepasst sind. Dass es eine selektive Anreicherung der Bakterien in der Wurzel geben muss, zeigt auch die Tatsache, dass es Unterschiede in der jeweiligen Mikrobengemeinschaft zwischen den beiden Ökotypen gibt. „Eine der Bakterienarten kommt in einem der Ökotypen zehnmal häufiger vor als im anderen“, sagt Schulze-Lefert.

„Wir haben uns natürlich auch gefragt, ob sich die bakterielle Lebensgemeinschaft nur zufällig in der Wurzel zusammengefunden hat oder ob es tatsächlich ein Anreicherungssystem über molekulare Eintrittskarten gibt, wie wir vermuten“, kommentiert Schulze-Lefert die Ergebnisse. Die Wissenschaftler haben deshalb die Verteilungsmuster der Bakterien untersucht, also welche Arten nur auf totem organischem Material zu finden sind, welche sich vornehmlich in den Wurzeln aufhalten und welche sowohl auf totem Material als auch in der Wurzel zu finden sind.

Die Bakterien, die sich nur auf totem Material ansiedeln müssen von den Pflanzen gezielt auf Distanz gehalten werden. Von den drei großen Bakteriengruppen dominieren in der lebenden Wurzel vor allem die Actinobakterien. „Es muss also eine molekulare Einladung für diese Gruppe geben“, sagt Schulze-Lefert „Wie sie aussieht, wissen wir nicht, nur dass die Ergebnisse nicht anders zu erklären sind. Die wichtige Frage, die sich daran anschließt ist, wie die nützlichen Bakterien vom pflanzlichen Immunsystem toleriert werden. Also wie unterscheidet Arabidopsis zwischen Freund und Feind?“ Pflanzen sind bei der Abwehr phytopathogener Bakterien normalerweise nicht zimperlich. Schädlinge werden schnell an ihren charakteristischen Mustern erkannt und mit der vollen Wucht des angeborenen Immunsystems attackiert.

Interessant ist auch die Gruppe von Bakterien, die sowohl auf dem toten Material als auch in den Wurzeln zu finden sind. Diese Gruppe macht immerhin mehr als 40 Prozent der Bakteriengesellschaft in der Wurzel aus. Die Kölner Wissenschaftler nehmen an, dass sich diese Bakterien vor allem auf bestimmte Anteile der pflanzlichen Zellwand spezialisiert haben, die bei lebendem und totem Material gleich sind und von diesen Bestandteilen angezogen werden. Eine ähnliche selektive Anreicherung bestimmter Bakterien in der Wurzel zeigt sich auch, wenn man Arabidopsis-Pflanzen aus der freien Natur mit denen aus dem Gewächshaus vergleicht.

Ansprechpartner

Prof. Dr. Paul Schulze-Lefert
Max-Planck-Institut für Pflanzenzüchtungsforschung
Telefon: +49 221 5062-350
Fax: +49 221 5062-353
Email: schlef@­mpipz.mpg.de
Christiane Wojtera
Max-Planck-Institut für Pflanzenzüchtungsforschung
Telefon: +49 221 5062-101
Fax: +49 221 5062-113
Email: wojtera@­mpipz.mpg.de
Originalveröffentlichung
Davide Bulgarelli, Matthias Rott, Klaus Schlaeppi, Emiel Ver Loren van Themaat, Nahal Ahmadinejad, Federica Assenza, Philipp Rauf, Bruno Huettel, Richard Reinhardt, Elmon Schmelzer, Joerg Peplies, Frank Oliver Gloeckner, Rudolf Amann, Thilo Eickhorst & Paul Schulze-Lefert
Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota.

Nature, 2. August 2012, doi: 10.1038/nature11336

Prof. Dr. Paul Schulze-Lefert | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5924669/lebensgemeinschaft_pflanzenwurzel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht „Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz
08.12.2017 | Technische Universität Dresden

nachricht Die Zukunft der grünen Gentechnik
08.12.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie