Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikroben schicken Elektronen in magnetischen Partikeln auf den Langstreckentransport

05.08.2016

Bakterien können Energie in Eisenminerale hineinpumpen und dort für den späteren Gebrauch oder weiter entfernte Nutzer speichern

Bakterien können Elektronen – gleichzusetzen mit „Energie“ – direkt in feste leitfähige magnetische Mineralien, sogenannte Magnetite, pumpen und im Magnetit über lange Strecken transportieren. Das hat ein internationales Forscherteam unter der Leitung von Dr. James Byrne und Professor Andreas Kappler vom Zentrum für Angewandte Geowissenschaften der Universität Tübingen festgestellt.


Eisen(III)-redzuierende Bakterien Geobacter sulfurreducens lagern Elektronen auf Magnetit-Nanopartikeln ab. Elektronenmikroskopische Aufnahme: Eye of Science, Reutlingen

Dies bedeutet für die Forscher einen Durchbruch bei der Frage, wie Mikroorganismen über weite Entfernungen Zugang zu Energiequellen finden. Die Entdeckung, die im Journal Scientific Reports veröffentlicht wurde, hat nach Einschätzung der Forscher das Potenzial, den Weg zu neuen Energiespeichertechnologien zu öffnen, bei denen einfach zu züchtende Bakterien mit in der Umwelt reichlich vorhandenen magnetischen Eisenablagerungen zusammengebracht werden könnten.

Der Austausch von Elektronen zur Bereitstellung von Energie ist schon lange als treibende Kraft allen Lebens auf der Erde erkannt worden. „Bakterien setzen Energie für den Eigengebrauch frei, indem sie Elektronen von einer Quelle zu einem Ablagerungsort auf niedrigerem Energieniveau verschieben “, erläutert James Byrne, der Erstautor der Studie. Geeignete Elektronenspender und -empfänger zu finden, könne jedoch eine große Herausforderung für die Bakterien sein. Daher hätten viele Organismen besondere Strategien entwickelt, um alle möglichen Materialien für diese Zwecke nutzen zu können.

Mithilfe von magnetischen Messungen, hochauflösender Elektronenmikroskopie und der leistungsstarken Synchrotroneinrichtung Diamond Light Source in Großbritannien konnte das Forscherteam nun nachweisen, dass viele der Mikroben Elektronen direkt in magnetische Eisenteilchen hineinpumpen oder aus ihnen abziehen können. Auf diese Weise können die Partikel genutzt werden, um Energie zu speichern – oder sogar als Energieüberträger über relativ weite Entfernungen.

„Das ist besonders interessant, wenn man bedenkt, über welche Distanzen diese Prozesse ablaufen“, sagt Byrne. „Bakterien sind meistens nur einen Mikrometer lang, also hundertmal kleiner als der Durchmesser eines menschlichen Haars. Der Elektronentransfer läuft aber teilweise über mehrere Zentimeter hinweg. Auf den Menschen übertragen müsste dieser noch in der Lage sein, einen Apfel in mehreren Kilometern Entfernung zu verzehren.“

Einige Typen von Bakterien können bei der Eisenoxidation die Elektronen nur aus den äußeren Nanometern der Magnetit-Partikel herausziehen, andere Bakterientypen sind dagegen bei der Eisenreduktion in der Lage, die Elektronen ins Innere des Magneten zu pumpen. Dies spiegelt sich auch im Verhalten der Bakterien: Die Eisen-oxidierenden Bakterien können für die Aufrechterhaltung ihres Stoffwechsels und das Wachstum nur die kleinsten Teilchen verwenden; die Eisen-reduzierenden Typen zeigten sich hingegen wenig wählerisch und nutzten Magnetit-Teilchen aller Größen als Elektronenempfänger.

Byrne sagt zusammenfassend: „Unsere Ergebnisse machen deutlich, dass Bakterien Elektronen in praktisch überall verfügbaren Materialien lagern können. Die Elektronen können zu einem späteren Zeitpunkt oder einem weiter entfernten Ort wieder abgezogen werden – durch die Bakterien selbst oder auch zur industriellen Nutzung.“

Publikation:
James M. Byrne, Gerrit van der Laan, Adriana I. Figueroa, Odeta Qafoku, Chongmin Wang, Carolyn I. Pearce, Michael Jackson, Joshua Feinberg, Kevin M. Rosso, Andreas Kappler (2016), Size dependent microbial oxidation and reduction of magnetite nano- and micro-particles, Scientific Reports, in press.

Kontakt:
Dr. James Byrne und Prof. Dr. Andreas Kappler
Universität Tübingen
Zentrum für Angewandte Geowissenschaften
james.byrne[at]uni-tuebingen.de; Telefon +49 7071 29-75496
andreas.kappler[at]uni-tuebingen.de; Telefon +49 7071 29-74992

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics