Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikroben im Marianengraben

18.03.2013
Eine erstaunlich aktive bakterielle Gemeinschaft lebt am tiefsten Punkt des Meeresbodens
Das Sediment des tiefsten Punktes der Erde, des Challengertiefs im Marianengraben, zeigt eine erstaunlich hohe mikrobielle Aktivität. Ein internationales Forscherteam um Professor Ronnie Glud von der Universität von Süddänemark, unter Beteiligung von Dr. Frank Wenzhöfer von der HGF-MPG Brückengruppe für Tiefsee-Ökologie und –Technologie des Max-Planck-Instituts für Marine Mikrobiologie in Bremen und des Alfred-Wegener-Instituts für Polar- und Meeresforschung in Bremerhaven, konnte zeigen, dass Mikroben in dieser von extremem Druck gekennzeichneten Umgebung zahlreich und sehr aktiv sind.

Ihre Forschungsergebnisse haben sie nun in der wissenschaftlichen Fachzeitschrift Nature Geoscience veröffentlicht.Ein internationales Forscherteam stellt seine Ergebnisse von einem der unzugänglichsten Platz auf unserer Erde vor: dem Meeresboden des Marianengrabens im Westpazifik, auf fast 11000 m Tiefe unter dem Meeresspiegel, was ihn zum tiefsten Punkt der Erde macht. Ihre Ergebnisse zeigen, dass eine höchst aktive Mikrobengemeinschaft die Sedimente des Grabens bewohnt, und das, obwohl dort ein extrem hoher Druck, 1100 mal so hoch wie auf Meeresspiegelhöhe, herrscht. In den Sedimenten des Grabens fanden die Forscher eine vielfach höhere Anzahl von Bakterien als in den umliegenden Sedimenten der Tiefseeebene auf „nur“ 6000 Meter Tiefe.

Hohe mikrobielle Aktivität in Tiefseegräben

Tiefseegräben sind Orte von hoher mikrobieller Aktivität, denn der Eintrag von organischem Material ist ungewöhnlich hoch. Dazu zählen absinkende Kadaver von Meerestieren, aber auch Reste von Algen, die sporadisch immer wieder in großen Mengen auf den Meeresboden sinken. An den Grabenhängen kann dieses Material, durch Erdbeben mobilisiert, in die tiefsten Stellen des Grabens abrutschen.
Demnach haben Tiefseegräben, obwohl sie nur etwa 2 % der Fläche der Ozeane der Erde ausmachen, einen relativ großen Einfluss auf den globalen Kohlenstoffkreislauf, so Professor Ronnie Glud von der Universität Süddänemark. Zusammen mit seinen Kollegen aus Deutschland (HGF-MPG Brückengruppe für Tiefsee-Ökologie und –Technologie des Max-Planck-Instituts für Marine Mikrobiologie und des Alfred-Wegener-Instituts für Polar- und Meeresforschung), Japan (Japan Agency for Marine-Earth Science and Technology), Scotland (Scottish Association for Marine Science) und Dänemark (Universität Kopenhagen) erkundete er den mikrobiellen Kohlenstoffumsatz im tiefsten Graben der Ozeane.

Technologische Herausforderung

Die Forscher maßen die Sauerstoffverteilung im Sediment des Grabens und an einer Referenzstelle auf 6000 m Tiefe und nahmen Sedimentkerne mit einem autonomen Probenahmegerät, welches mit einer Videokamera ausgestattet war. „Wir können aus der Sauerstoffverteilung die bakterielle Sauerstoffaufnahme, also die Atmung, berechnen,“ sagt Dr. Frank Wenzhöfer. „Zusammen mit der Information über den Gehalt an organischem Kohlenstoff im Sediment können wir so die mikrobielle Aktivität im Sediment abschätzen“. Natürlich sind die Messungen in solch großen Tiefen eine technische und logistische Herausforderung. „ Wenn wir Proben vom Meeresboden heraufholen, um sie im Labor zu untersuchen, überleben viele der an die Tiefseebedingungen angepassten Organismen die Temperatur- und Druckveränderung nicht. Deshalb haben wir Geräte entwickelt, die vorprogrammierte Messabläufe autonom auf dem Meeresboden bei hohem Druck ausführen.“, erklärt Ronnie Glud. Das Forscherteam hat mit mehreren Firmen zusammen einen Unterwasser-Roboter entwickelt, der beinahe 4 m groß ist und 600 kg wiegt. Dieser Roboter führte unter anderem die Sauerstoffmessungen mit ultraempfindlichen Sensoren durch.
"Auf unseren Videos aus der Tiefe sind kaum größere Tiere zu sehen“, sagt Ronnie Glud. „Wir haben es also mit einer Welt zu tun, die von Mikroorganismen dominiert ist, die in hohem Grade an für die meisten höheren Organismen feindlichen Bedingungen angepasst sind.“

Für Dr. Frank Wenzhöfer ist die Erforschung der Tiefseegräben nicht nur wichtig, um deren Einfluss auf den globalen Kohlenstoffkreislauf genauer definieren zu können. „Die Tiefseegräben sind nach wie vor einige der letzten weißen Flecken auf der Landkarte. Wir möchten gerne die bakteriellen Gemeinschaften dort genauer charakterisieren und verstehen, wie sie sich an ein Leben in diesem außergewöhnlichen Lebensraum angepasst haben. Außerdem möchten wir herausfinden, ob der mikrobielle Kohlenstoffumsatz in der Tiefsee Auswirkungen auf unser Klima hat. Dazu sind Expeditionen zu weiteren Tiefseegräben, zum Beispiel dem Kermadec-Tonga-Graben bei den Fiji-Inseln, geplant.“
Rückfragen an
Professor Ronnie Glud, Nordic Center for Earth Evolution at the University of Southern Denmark. Phone: +45 65 50 27 84, mobile: +45 60 11 19 13, email: rnglud@biology.sdu.dk

Dr. Frank Wenzhöfer, HGF-MPG Brückengruppe für Tiefsee-Ökologie und –Technologie
fwenzhoe@mpi-bremen.de
Telefon: +49 (0) 421 2028 862

Oder an die Pressesprecher
Dr. Rita Dunker rdunker@mpi-bremen.de +49 (0) 421 2028 856
Dr. Manfred Schlösser mschloes@mpi-bremen.de +49 (0) 421 2028 704

Originalarbeit

High rate of microbial carbon turnover in sediments in the deepest oceanic trench on Earth, 2013. Ronnie N. Glud, FrankWenzhöfer, Mathias Middelboe, Kazumasa Oguri,

Der Tiefsee-Lander nach erfolgreicher Mission und dreistündigem Aufstieg durch die Wassersäule. Die Wissenschaftler an Bord des FS Yokosuka konnten damit auf insgesamt vier Tauchgängen viele wissenschaftliche Daten und Proben sammeln.
Frank Wenzhöfer

Robert Turnewitsch, Donald E. Canfield and Hiroshi Kitazato. Nature Geoscience

DOI: 10.1038/NGEO1773

Beteiligte Institute

University of Southern Denmark, Nordic Centre for Earth Evolution, Odense, Dänemark

Scottish Association for Marine Science, Scottish Marine Institute, Oban, Großbrittanien

Greenland Climate Research Centre, Nuuk, Grönland

Max-Planck-Institut für Marine Mikrobiologie, Bremen

Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven

Universität Kopenhagen, Marine Biological Section, Helsingør, Dänemark

Japan Agency for Marine-Earth Science and Technology, Institute of Biogeosciences, Yokosuka, Japan

Japan Agency for Marine-Earth Science and Technology, Marine Technology and Engineering Center, Yokosuka, Japan

Dr. Manfred Schloesser | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-bremen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten