Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikroben an Hydrothermalquellen eliminieren Klimagas Methan

23.09.2011
In marinen Sedimenten lagern große Mengen des Treibhausgases Methan, das entweder durch mikrobiellen Stoffwechsel oder durch geothermale Prozesse entsteht.

Dennoch gelangt das Methan selten in die Atmosphäre und kann dort seine Wirkung als klimarelevantes Gas entfalten, denn es wird zum großen Teil bereits im Sediment wieder abgebaut. Jetzt berichten Bremer Max-Planck-Forscher und ihre Kollegen über neue mikrobielle Lebensgemeinschaften, die Methan unter Ausschluss von Sauerstoff bei hohen Temperaturen von bis zu 70 °C abbauen können.


Das Guaymas-Becken an der Westküste von Mexiko.
Rita Dunker, Max-Planck-Institut für Marine Mikrobiologie, Bremen


Mikroskopische Aufnahme eines kettenförmigen AOM-Konsortiums. Die methanoxidierenden Archaeen sind in rot, die sulfatreduzierenden Bakterien in grün dargestellt.
Thomas Holler, Kathrin Knittel, Max-Planck-Institut für Marine Mikrobiologie, Bremen

Zum biologischen Abbau des Treibhausgases Methan sind nur wenige spezialisierte Mikroorganismen fähig. Bei einigen spielt dabei Sauerstoff als Oxidationsmittel eine Rolle, andere wiederum bauen Methan unter Ausschluss von Sauerstoff ab. Ohne Sauerstoff bauen die Mikroorganismen Methan nur unter speziellen Bedingungen ab, zum Beispiel in einer engen Lebensgemeinschaft von Archaeen und Bakterien. In dem Prozess der Anaeoben Oxidation von Methan (AOM) wird das Methan mit Sulfat als Oxidationsmittel umgesetzt. Die beiden Partner dieser mikrobiellen Konsortien profitieren dabei voneinander, indem die Archaeen das Methan nutzen können, während die Bakterien ihre Energie aus einem bisher unbekannten Zwischenprodukt der Archaeen und Sulfat gewinnen.

Bislang hatte man diese Lebensgemeinschaften zwischen Methan-oxidierenden Archaeen und Sulfat-reduzierenden Bakterien nur in Lebensräumen mit kalten und gemäßigten Temperaturbedingungen von -1,5-20 °C gefunden. Schon lange jedoch wissen die Mikrobiologen, dass die mikrobiellen Prozesse der Sulfatreduktion und Methanogenese, ein der Anaeroben Oxidation von Methan verwandter Stoffwechselweg, bei Temperaturen von bis zu 100°C ablaufen können. So starteten die Max-Planck-Forscher die Suche nach AOM-Konsortien, die auch bei hohen Temperaturen aktiv sind.

Fündig geworden sind Thomas Holler und seine Kollegen in Sedimentproben aus dem Guaymas-Becken, in denen sie den Abbau von Methan unter sauerstofffreien Bedingungen verfolgten. Das Guaymas-Becken liegt im Golf von Kalifornien in Mexiko auf einem ozeanischen Rücken, einem seismisch aktiven Bereich. Auseinanderdriftende tektonische Platten lassen entlang dieses Rückens neue Erdkruste entstehen. Aufsteigender, heißer Basalt erhitzt das Sediment, wodurch abgelagertes, organisches Material zu Erdöl, Methan und anderen Kohlenwasserstoffen zerfällt. Heiße Porenwasser treten aus dem Sediment aus und bilden Hydrothermalquellen, an denen eine Vielzahl von Mikroorganismen vom Abbau der Kohlenwasserstoffe lebt. Um das Sediment untersuchen zu können, holten die Forscher Sedimentkerne mit dem bemannten Tauchboot Alvin aus über 2000 m Tiefe herauf.

Thomas Holler sagt: „Im Labor haben wir die Proben inkubiert und dann mit einer Reihe biogeochemischer und molekularbiologischer Methoden untersucht. Dabei konnten wir nachweisen, dass die Anaerobe Oxidation von Methan von einem besonderen mikrobiellen Konsortium betrieben wird, das bei 50 °C optimal arbeitet. Sogar bis 70 °C ist die mikrobielle Gemeinschaft noch in der Lage, Methan zu verarbeiten. Aus der Abbaugeschwindigkeit von Methan (AOM-Rate) konnten wir eine Verdopplungszeit der AOM-Organismen von 68 Tagen bei 50 °C berechnen.“ Sein Kollege Gunter Wegener ergänzt: “Dies mag zwar langsam erscheinen, ist aber für Mikroorganismen, die unter extremen Bedingungen in der Tiefsee leben, wo sehr langsame Verdopplungszeiten von bis zu mehreren hundert Jahren vorkommen können, beachtlich schnell.“

Die jetzt im Guaymas-Becken entdeckte AOM-Gemeinschaft aus dem besteht aus einer neuartigen Gruppe von Methan-oxidierenden Archaeen, die nahe mit der bekannten Archeengruppe ANME-1 (ANaerobe MEthanabbauer) verwandt ist, sowie Sulfat-reduzierenden Bakterien. Diese gehören zu den Deltaproteobakterien und sind stammesgeschichtlich entfernt mit Sulfatreduzierern verwandt, die in vorherigen Untersuchungen als Partner von ANME-1-Archaeen identifiziert wurden.

Die beiden Partner bilden Aggregate von bis zu mehreren hundert Zellen. Das besondere bei den Guaymas-Konsortien ist, dass manche auch in einer gemeinsamen, kettenförmigen Hülle zusammenleben. Diese kettenförmige Art der Aggregation beobachteten die Forscher zum ersten Mal für AOM-Organismen.

Die Wissenschaftler haben damit gezeigt, dass die Anaerobe Oxidation von Methan nicht auf kalte und gemäßigte marine Sedimente beschränkt ist. Thomas Holler sagt: „Bei der AOM und den Folgereaktionen entstehen aus Methan unlösliche Carbonate und Sulfat wird verbraucht. Für uns bleibt interessant herauszufinden, welchen Beitrag diese Konsortien zum globalen Methanabbau liefern und welche Rolle sie für die geologische Gesteinsbildung, beispielsweise die Umbildung von Anhydrit (CaSO4) zu Calcit (CaCO3) spielen. Damit könnten wir ihre Funktion im globalen Kohlenstoffkreislauf genauer beschreiben.“

Rückfragen an
Dr. Thomas Holler 0421 2028 732 tholler@mpi-bremen.de
Dr. Gunter Wegener 0421 2028 866 gwegener@mpi-bremen.de
Oder an die Pressesprecher
Dr. Rita Dunker 0421 2028 856 rdunker@mpi-bremen.de
Dr. Manfred Schlösser 0421 2028 704 mschloes@mpi-bremen.de
Originalarbeit
Thermophilic anaerobic oxidation of methane by marine microbial consortia. T. Holler, F. Widdel, K. Knittel, R. Amann, M. Y. Kellermann, K.-U. Hinrichs, A. Boetius, and G. Wegener. ISME Journal

DOI: 10.1038/ismej.2011.77

Beteiligte Institute
Max Planck Institute for Marine Microbiology, Bremen, Germany
MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

Alfred Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany

Dr. Manfred Schloesser | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-bremen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ionen gegen Herzrhythmusstörungen – Nicht-invasive Alternative zu Katheter-Eingriff
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Leibwächter im Darm mit chemischer Waffe
20.01.2017 | Max-Planck-Institut für chemische Ökologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise