Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikroben an Hydrothermalquellen eliminieren Klimagas Methan

23.09.2011
In marinen Sedimenten lagern große Mengen des Treibhausgases Methan, das entweder durch mikrobiellen Stoffwechsel oder durch geothermale Prozesse entsteht.

Dennoch gelangt das Methan selten in die Atmosphäre und kann dort seine Wirkung als klimarelevantes Gas entfalten, denn es wird zum großen Teil bereits im Sediment wieder abgebaut. Jetzt berichten Bremer Max-Planck-Forscher und ihre Kollegen über neue mikrobielle Lebensgemeinschaften, die Methan unter Ausschluss von Sauerstoff bei hohen Temperaturen von bis zu 70 °C abbauen können.


Das Guaymas-Becken an der Westküste von Mexiko.
Rita Dunker, Max-Planck-Institut für Marine Mikrobiologie, Bremen


Mikroskopische Aufnahme eines kettenförmigen AOM-Konsortiums. Die methanoxidierenden Archaeen sind in rot, die sulfatreduzierenden Bakterien in grün dargestellt.
Thomas Holler, Kathrin Knittel, Max-Planck-Institut für Marine Mikrobiologie, Bremen

Zum biologischen Abbau des Treibhausgases Methan sind nur wenige spezialisierte Mikroorganismen fähig. Bei einigen spielt dabei Sauerstoff als Oxidationsmittel eine Rolle, andere wiederum bauen Methan unter Ausschluss von Sauerstoff ab. Ohne Sauerstoff bauen die Mikroorganismen Methan nur unter speziellen Bedingungen ab, zum Beispiel in einer engen Lebensgemeinschaft von Archaeen und Bakterien. In dem Prozess der Anaeoben Oxidation von Methan (AOM) wird das Methan mit Sulfat als Oxidationsmittel umgesetzt. Die beiden Partner dieser mikrobiellen Konsortien profitieren dabei voneinander, indem die Archaeen das Methan nutzen können, während die Bakterien ihre Energie aus einem bisher unbekannten Zwischenprodukt der Archaeen und Sulfat gewinnen.

Bislang hatte man diese Lebensgemeinschaften zwischen Methan-oxidierenden Archaeen und Sulfat-reduzierenden Bakterien nur in Lebensräumen mit kalten und gemäßigten Temperaturbedingungen von -1,5-20 °C gefunden. Schon lange jedoch wissen die Mikrobiologen, dass die mikrobiellen Prozesse der Sulfatreduktion und Methanogenese, ein der Anaeroben Oxidation von Methan verwandter Stoffwechselweg, bei Temperaturen von bis zu 100°C ablaufen können. So starteten die Max-Planck-Forscher die Suche nach AOM-Konsortien, die auch bei hohen Temperaturen aktiv sind.

Fündig geworden sind Thomas Holler und seine Kollegen in Sedimentproben aus dem Guaymas-Becken, in denen sie den Abbau von Methan unter sauerstofffreien Bedingungen verfolgten. Das Guaymas-Becken liegt im Golf von Kalifornien in Mexiko auf einem ozeanischen Rücken, einem seismisch aktiven Bereich. Auseinanderdriftende tektonische Platten lassen entlang dieses Rückens neue Erdkruste entstehen. Aufsteigender, heißer Basalt erhitzt das Sediment, wodurch abgelagertes, organisches Material zu Erdöl, Methan und anderen Kohlenwasserstoffen zerfällt. Heiße Porenwasser treten aus dem Sediment aus und bilden Hydrothermalquellen, an denen eine Vielzahl von Mikroorganismen vom Abbau der Kohlenwasserstoffe lebt. Um das Sediment untersuchen zu können, holten die Forscher Sedimentkerne mit dem bemannten Tauchboot Alvin aus über 2000 m Tiefe herauf.

Thomas Holler sagt: „Im Labor haben wir die Proben inkubiert und dann mit einer Reihe biogeochemischer und molekularbiologischer Methoden untersucht. Dabei konnten wir nachweisen, dass die Anaerobe Oxidation von Methan von einem besonderen mikrobiellen Konsortium betrieben wird, das bei 50 °C optimal arbeitet. Sogar bis 70 °C ist die mikrobielle Gemeinschaft noch in der Lage, Methan zu verarbeiten. Aus der Abbaugeschwindigkeit von Methan (AOM-Rate) konnten wir eine Verdopplungszeit der AOM-Organismen von 68 Tagen bei 50 °C berechnen.“ Sein Kollege Gunter Wegener ergänzt: “Dies mag zwar langsam erscheinen, ist aber für Mikroorganismen, die unter extremen Bedingungen in der Tiefsee leben, wo sehr langsame Verdopplungszeiten von bis zu mehreren hundert Jahren vorkommen können, beachtlich schnell.“

Die jetzt im Guaymas-Becken entdeckte AOM-Gemeinschaft aus dem besteht aus einer neuartigen Gruppe von Methan-oxidierenden Archaeen, die nahe mit der bekannten Archeengruppe ANME-1 (ANaerobe MEthanabbauer) verwandt ist, sowie Sulfat-reduzierenden Bakterien. Diese gehören zu den Deltaproteobakterien und sind stammesgeschichtlich entfernt mit Sulfatreduzierern verwandt, die in vorherigen Untersuchungen als Partner von ANME-1-Archaeen identifiziert wurden.

Die beiden Partner bilden Aggregate von bis zu mehreren hundert Zellen. Das besondere bei den Guaymas-Konsortien ist, dass manche auch in einer gemeinsamen, kettenförmigen Hülle zusammenleben. Diese kettenförmige Art der Aggregation beobachteten die Forscher zum ersten Mal für AOM-Organismen.

Die Wissenschaftler haben damit gezeigt, dass die Anaerobe Oxidation von Methan nicht auf kalte und gemäßigte marine Sedimente beschränkt ist. Thomas Holler sagt: „Bei der AOM und den Folgereaktionen entstehen aus Methan unlösliche Carbonate und Sulfat wird verbraucht. Für uns bleibt interessant herauszufinden, welchen Beitrag diese Konsortien zum globalen Methanabbau liefern und welche Rolle sie für die geologische Gesteinsbildung, beispielsweise die Umbildung von Anhydrit (CaSO4) zu Calcit (CaCO3) spielen. Damit könnten wir ihre Funktion im globalen Kohlenstoffkreislauf genauer beschreiben.“

Rückfragen an
Dr. Thomas Holler 0421 2028 732 tholler@mpi-bremen.de
Dr. Gunter Wegener 0421 2028 866 gwegener@mpi-bremen.de
Oder an die Pressesprecher
Dr. Rita Dunker 0421 2028 856 rdunker@mpi-bremen.de
Dr. Manfred Schlösser 0421 2028 704 mschloes@mpi-bremen.de
Originalarbeit
Thermophilic anaerobic oxidation of methane by marine microbial consortia. T. Holler, F. Widdel, K. Knittel, R. Amann, M. Y. Kellermann, K.-U. Hinrichs, A. Boetius, and G. Wegener. ISME Journal

DOI: 10.1038/ismej.2011.77

Beteiligte Institute
Max Planck Institute for Marine Microbiology, Bremen, Germany
MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

Alfred Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany

Dr. Manfred Schloesser | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-bremen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften