Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrobe des Jahres 2015: Rhizobium - Kein Gemüse ohne Bakterien

09.02.2015

„Knöllchenbakterium“ heißt die Mikrobe des Jahres 2015, mit wissenschaftlichem Namen Rhizobium („in den Wurzeln lebend“). Diese Mikrobe erleichtert den Anbau von Bohnen, Erbsen, Linsen und Futtermitteln wie Klee. Die Bakterien liefern diesen Pflanzen das für ihr Wachstum notwendige Ammonium auf natürlichem Weg und ersetzen damit künstlichen Dünger. An den Wurzeln dieser Pflanzen sind die Knöllchen mit den Bakterien deutlich sichtbar. Die Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM) kürte diesen faszinierenden Mikroorganismus am 9. Februar 2015 zur Mikrobe des Jahres 2015.

Impfung für Saatgut


Wurzelknöllchen am Rotklee

© Harald Engelhardt, Martinsried


Knöllchenbakterien in der Wurzel von Schneckenklee (Medicago truncatula) vier Wochen nach Infektion mit Sinorhizobium meliloti

© Ulrike Mathesius, Canberra, Australien

Schon vor über 100 Jahren hatte man erkannt, dass bestimmte Pflanzen, die Hülsenfrüchtler, in Erde reich an Rhizobien gut wachsen. Heutzutage wäre die weltweite Produktion von über 250 Millionen Tonnen Soja im Wert von 50 Milliarden US-Dollar nicht denkbar ohne Knöllchenbakterien:

Schon das Saatgut wird mit dem verwandten Bakterium Bradyrhizobium beimpft, um das Wachstum der Soja-Pflanzen sicherzustellen. Die Pflanze sendet chemische Signale aus; daraufhin dringen die Bakterien in die Wurzelhärchen ein, und es entstehen in wenigen Wochen bakteriengefüllte Knöllchen.

Knöllchen bilden Blutfarbstoff

In diesen Knöllchen bilden die Pflanzen einen roten Farbstoff (Leghämoglobin), nah verwandt mit dem menschlichen Blutfarbstoff Hämoglobin. Er sorgt – wie in unserem Blut – dafür, dass Sauerstoff gebunden werden kann. Das ist notwendig, um eine Sauerstoff-arme Umgebung herzustellen. Nur dann funktioniert die spezielle Enzym-Maschinerie der Bakterien – und die kann etwas, was die Pflanze nicht kann: Sie wandelt den Stickstoff (N2) aus der Luft um in Ammonium (NH4+).

Ammonium benötigen Pflanzen wie alle Lebewesen, um Proteine und Bausteine für ihr Erbgut herzustellen. Alle Hülsenfrüchtler – zu denen außer Bohne, Erbse, Kichererbse und Erdnuss noch rund 18.000 Arten zählen – können so dank Rhizobium und verwandter Bakterien auf stickstoffarmen Böden wachsen.

Pflanze und Bakterium: eine win-win-Situation

Vor schätzungsweise 100 Millionen Jahren entwickelte sich diese faszinierende Zusammenarbeit zwischen Pflanzen und Bakterien. Normalerweise versuchen Pflanzen, das Eindringen von Bakterien zu verhindern. Doch hier entstand ein komplexes Kommunikationssystem, mit dem sich Pflanzen und Bakterien so verständigen, dass ein Zusammenleben zum beiderseitigen Nutzen gelingt:

Die Bakterien können sich geschützt vermehren und mit Nährstoffen über die Pflanze versorgen lassen; die Pflanze kann karge Böden besiedeln. Diese Zusammenarbeit ist von hoher ökologischer und wirtschaftlicher Bedeutung, sichert sie doch die pflanzliche Vielfalt vom Hasenklee bis zu Bäumen wie Akazie, Johannisbrot und Palisander, aber auch unsere Ernährung mit Gemüse sowie die Futtermittelproduktion.

Ersatz für Kunstdünger

Seit die Menschen intensiv Ackerbau betreiben, haben sie gelernt, durch Fruchtfolgen die Ertragsfähigkeit von Böden zu erhalten. Hülsenfrüchtler wie Rotklee, Lupine und Ackerbohne sind als Gründüngung die Grundlage für eine hohe Bodenqualität - weil Rhizobien die Stickstoffbindung sicherstellen. Nach Schätzungen binden Bakterien jährlich 170 Millionen Tonnen Stickstoff im Boden und in Pflanzen, davon etwa ein Viertel auf Agrarflächen. Anders als künstlicher Dünger belastet dies nicht die Gewässer mit Nitrat (NO3-Verbindungen).

Forscher suchen daher intensiv nach einem Weg, die Zusammenarbeit zwischen Rhizobien und Hülsenfrüchtlern auf Getreidesorten zu übertragen. Dazu müssen diese für die Welternährung so wichtigen Pflanzen jedoch die „Sprache“ lernen, um mit stickstoffversorgenden Bakterien kommunizieren und Wurzelknöllchen bilden zu können.
Anja Störiko

Die Mikrobe des Jahres wurde 2014 erstmals benannt. Mikrobiologen der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM) wählen sie aus, um auf die Vielfalt der mikrobiologischen Welt hinzuweisen. Während in der Bevölkerung Mikroorganismen vor allem als Krankheitsauslöser bekannt sind, spielen Mikroorganismen eine weit bedeutsamere Rolle für die Ökologie, Gesundheit, Ernährung und Wirtschaft, worauf die die Mikrobe des Jahres hinweisen soll.

Wer findet die Mikrobe des Jahres 2015? heißt der von der VAAM ausgerufene Wettbewerb für Schüler/innen und Studierende. Wer Fotos, Videos oder andere kreative Gestaltungen zu Rhizobium bis 15. Oktober 2015 einreicht, kann wertvolle Preise gewinnen. Weitere Informationen ab Ende Februar unter http://www.mikrobe-des-jahres.de.


Die VAAM ist Gründungsmitglied im VBIO und vertritt rund 3500 mikrobiologisch orientierte Wissenschaftlerinnen und Wissenschaftler aus Forschung und Industrie. Die Bandbreite der Forschung reicht von Bakterien, Archaeen und Pilzen in allen Ökosystemen und in Lebensmitteln über Krankheitserreger bis hin zu Genomanalysen und industrieller Nutzung von Mikroorganismen und ihren Enzymen.

Informationen, Experten-Kontakte, Bildmaterial:
Dr. Anja Störiko |Tel. 06192 23605 | info@mikrobe-des-jahres.de
www.mikrobe-des-jahres.de

Weitere Informationen:

http://www.mikrobe-des-jahres.de/

Dr. Kerstin Elbing | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht CHP1-Mutation verursacht zerebelläre Ataxie
23.01.2018 | Uniklinik Köln

nachricht Lebensrettende Mikrobläschen
23.01.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics