Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikroalgen als „natürliche Filter“

24.11.2016

Erste Forschungsergebnisse

Zu Beginn dieses Jahres erhielt Dr. Hedda Sander an der Fakultät Versorgungstechnik der Ostfalia Hochschule für angewandte Wissenschaften die Mitteilung, dass ihr Forschungsprojekt „Behandlung von Schwermetallkontaminationen in Gewässern und Schlämmen mit Bioremediationsverfahren (Kontamed) durch das Förderprogramm „Zentrale Innovationsprogramm Mittelstand (ZIM)“ des Bundesministeriums für Wirtschaft und Energie (BMWi) für einen Zeitraum von zwei Jahren unterstützt wird.


Einer der Bioreaktoren, in denen die Algenkulturen im Lichtbrutschrank getestet werden.

Foto (Ostfalia)


Cora Rolfes bei der Schwermetallanalyse mit einem Atomabsorptionsspektrometer

Foto (Ostfalia)

Jetzt liegen die ersten Ergebnisse vor, die in einer ersten gemeinsamen Sitzung mit den beiden beteiligten Firmen, der ASA Spezialenzyme GmbH (Wolfenbüttel) und der Polyplan GmbH (Bremen), vorgestellt wurden.

Worum geht‘s?

Schwermetall-Kontaminationen in terrestrischen und aquatischen Systemen stellen ein steigendes Umweltproblem in kommunalen und industriellen Abwässern, landwirtschaftlich genutzten Böden, Mineralwässern, Flüssen und mariner Umgebung dar. Bei diesen Verunreinigungen ist oftmals der Mensch die Ursache, zum Beispiel durch die Urbanisierung, Industrialisierung oder auch durch den Bergbau.

Eine Anreicherung von Schwermetallen in der Nahrungskette – insbesondere von Kupfer, Cadmium, Chrom, Quecksilber und Zink –  hat schwere gesundheitliche Folgen für Mensch und Tier. Aufgrund gesetzlicher Regelungen wird die Reduzierung der Kontaminationen, also eine Dekontamination, gefordert.

Diese erfordert allerdings für Anrainerkommunen finanziell tragbare Methoden, was über energie-, material- und kostenintensive herkömmliche Prozesse – oftmals ohne Möglichkeit einer kosteneffizienten in situ Verarbeitung – zumeist nicht erreicht wird.

Eine umweltfreundliche und kostengünstige Lösung des Problems: Der Einsatz von Mikroalgen

Im aktuellen Forschungsprojekt werden Daten zur Schwermetallaufnahmefähigkeit bestimmter in Europa verbreiteter Mikroalgen Spezies unter vergleichbaren Bedingungen gewonnen und Methoden erarbeitet, die einen kommerziell möglichst kostengünstigen Einsatz zur Bioremediation schwermetallbelasteter Gewässer ermöglichen. Kurzum: Die Algen werden gewissermaßen als „natürlicher Filter“ eingesetzt, tragen damit zu einer „biologischen Sanierung“ der belasteten Gewässer bei und können zudem in großen Mengen kostengünstig stetig produziert werden.

Dr. Sander berichtet: „Die derzeit getesteten Algenarten weisen nach ersten Ergebnissen insgesamt eine Fähigkeit der Akkumulation von Schwermetallen wie Cadmium, Quecksilber, Arsen und Blei auf. Besonders interessant dabei: Die inaktivierte Algenbiomasse kann von der Aufnahmefähigkeit her mit Aktivkohle erfolgreich konkurrieren!“

Die ersten Ergebnisse werden im März 2017 auch auf dem Kongress der American Water Research Association in Wisconsin von Dr. Sander und ihrer wissenschaftlichen Mitarbeiterin Cora Rolfes vorgestellt.

Hochschule Braunschweig/Wolfenbüttel

Hochschulentwicklung und Kommunikation

Evelyn Meyer-Kube

PR/Presse

Telefon    +49 (0)5331 939 10150

Telefax     +49 (0)5331 939 10154

E-Mail      presse@ostfalia.de

Web     www.ostfalia.de/presse  

Evelyn Meyer-Kube | Hochschule Braunschweig/Wolfenbüttel

Weitere Berichte zu: Aktivkohle Algenarten Cadmium Filter Mikroalgen Nahrungskette Polyplan Water Research

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics