Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikro-Zwiebeln und magnetische Tinte

08.08.2011
Mikrofluidiksystem für die einfache Herstellung mehrphasiger Emulsionstropfen und mehrwandiger Polymerkapseln

Wie Miniatur-Zwiebeln sehen sie unter dem Mikroskop aus: die Mikrokapseln für magnetische Tinten und Transportsysteme für Mehrkomponenten-Pharmaka, die David A. Weitz und Shin Hyun Kim in der Zeitschrift Angewandte Chemie vorstellen. Die Forscher von der Harvard University (Cambridge, USA) haben ein einfaches Verfahren entwickelt, mit dem diese schalenartig aufgebauten Winzlinge in einem mikrofluidischen System in nur einem Schritt hergestellt werden können.

Durch ein ausgeklügeltes mikrofluidisches System, das aus mehreren wasserabweisend und wasseranziehend beschichteten Glaskapillaren besteht, gelingt es den Forschern, entgegengesetzt gerichtete Flüssigkeitsströme aus nicht mischbaren Flüssigkeiten (Öl und Wasser) trickreich aufeinanderprallen zu lassen. Dabei bilden sich winzige Tröpfchen, die in die Öffnung eines Auffanggefäßes wandern und die die Phasengrenzen zwischen den Flüssigkeiten gekonnt aufbrechen, sodass je nach Aufbau des Systems drei- oder vierschichtige Emulsionstropfen entstehen. Mit diesem Verfahren lassen sich erstmals auf einfache Weise und in nur einem einzigen Schritt einheitlich aufgebaute, einheitlich große mehrschalige Emulsionstropfen in großer Zahl erzeugen.

Als Anwendungsbeispiel stellten Weitz und Kim eine „magnetische Tinte“ für Displays her. Die ölartige Phase war in diesem Fall eine UV-vernetzbare Polymerlösung. Die Forscher erzeugten Emulsionstropfen mit einem Kern aus Polymerlösung, die von einer Wasserschicht umgeben ist, die ihrerseits von einer weiteren Schicht aus Polymerlösung umschlossen wird. In die Polymerlösung, die den inneren Kern bilden sollte, mischten sie magnetische Partikel und schwarze Pigmente ein. In die wässrige Flüssigkeit gaben sie winzige Kunststoffkügelchen. Nach UV-Bestrahlung entstanden durchsichtige Kapseln mit einer festen Hülle und einem festen, schwarzen Kern, der zusammen mit den Kunststoffkügelchen frei in der wässrigen Flüssigkeit schwimmt. Ohne Magnetfeld halten sich die schwarzen Kerne in der Mitte der Kapseln auf. Eine Schicht aus Kapseln für ein Display wirkt dann weiß, weil die Kunststoffkügelchen das Licht streuen. Wird ein Magnetfeld angelegt, werden die Kerne in Richtung der Display-Oberfläche gezogen, die schwarze Färbung ist nun zu sehen.

Eine weitere praktische Anwendung für mehrschichtige Kapseln wäre der Transport von Multikomponenten-Wirkstoffen, die getrennt bleiben und im Organismus dann gezielt nacheinander freigesetzt werden sollen.

Angewandte Chemie: Presseinfo 33/2011

Autor: Shin-Hyun Kim, Harvard University, http://weitzlab.seas.harvard.edu/

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201102946

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Shin-Hyun Kim | GDCh
Weitere Informationen:
http://presse.angewandte.de/
http://weitzlab.seas.harvard.edu/
http://dx.doi.org/10.1002/ange.201102946

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics