Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikro-Shuttles und Laser-Fernbedienung

13.08.2009
Jacobs University entwickelt neue Methode zur Stoffwechselforschung in lebenden Zellen

Dem Zellbiologen Sebastian Springer und dem Biophysiker Matthias Winterhalter von der Jacobs University gelang es erstmals, zusammen mit Wissenschaftlern des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung und weiteren englischen Kollegen, stoffwechselresistente Mikrokapseln in lebende Zellen einzuschleusen und deren Inhalt durch Laserimpuls mit exakter zeitlicher Kontrolle freizusetzen.


Kleiner als ein Zellkern (graues Oval, Mitte): das neue Substanz-Mikroshuttle (rot mit Pfeil) direkt \"vor Ort\" im Inneren einer lebenden Zelle (grün: Endoplasmatisches Reticulum)

Mit der in der aktuellen Online-Ausgabe von Small (DOI: 10.1002/smll.200900809) publizierten Methode dokumentierten die Forscher erstmals intrazelluläre Immunprozesse in hoher Zeitauflösung, vom Freisetzen zellfremder Proteine im Zellinneren bis zu deren Einbau als Antigene an der Zelloberfläche.

Unverzichtbar für das Verständnis von Stoffwechselprozessen in Zellen, beispielsweise ihre Immunantwort auf Virus-Infektionen, ist das zeitgenaue Nachvollziehen einzelner Transport- und Umsetzungsschritte der beteiligten Substanzen. Um die Kinetik solcher Prozesse zu beobachten, werden Markermoleküle verwendet, deren Schicksal in den Zellen mit den unterschiedlichsten Nachweismethoden verfolgt wird.

Viele dieser Methoden haben jedoch den Nachteil, dass die molekularen Marker nicht in ausreichender Menge in die lebenden Zellen eingeschleust werden können. Andere Präparationsmethoden, bei denen entsprechend höhere Konzentrationen in die Zellen gelangen, beeinträchtigen die Zellfunktionen und somit auch den Ablauf der untersuchten Prozesse.

Ziel der Jacobs- und Max-Planck-Forscher war es, lebende Zellen möglichst schonend mit definierten Mengen experimenteller Marker zu präparieren und diese dann kontrolliert zu einem definierten Zeitpunkt im Zellinneren freizusetzen, nachdem sich die Zellen von negativen Präparationseffekten erholt haben. Für die Substanz-Einschleusung entwickelten die Forscher "Miniaturshuttles" aus speziellen stoffwechselresistenten Kunststofffasern mit eingelagerten Nano-Goldpartikeln und einem Durchmesser von rund zwei Mikrometern, was der Größe eines kleinen Bakteriums entspricht. Hergestellt werden die Kapseln, indem die Kunststofffasern netzartig um einen mineralischen Kern gewickelt werden, der dann durch Säure herausgelöst wird. Die so entstandenen porösen Mikro-Holkugeln können die gelöste Testsubstanz aufsaugen und werden dann versiegelt, indem die Kunststofffasern durch Erwärmen geschrumpft und die Poren so verschlossen werden.

In die lebendigen Zellen gelangen die gefüllten Kapseln mittels Diffusion durch die Zellwände, die vorher durch Elektroporation, eine Art Elektroschockbehandlung, für Partikel dieser Größe durchlässig gemacht wurden. Um die Testsubstanz im Zellinneren freizusetzen, werden die Zellen dann mit einem Infrarotlaser beschossen, der die Zellen nicht schädigt, jedoch die Nano-Goldpartikel in den Kapselwänden in Resonanzschwingung versetzt, so dass sie sich erhitzen und die Kapselwände aufschmelzen.

Zur Validierung der Methode schleusten die Wissenschaftler Mikrokapseln mit künstlichen, Fluoreszenz-markierten Proteinfragmenten in das Innere von flüssig kultivierten, lebenden Nagetierzellen ein, um kontrolliert eine Immunantwort der Zellen, die sogenannte Antigenpräsentation an der Zelloberfläche, auszulösen. Nach dem Freisetzen der Marker durch Laserimpuls konnten die Forscher die Ausbreitung der zellfremden Peptidmarker in der Zelle, ihre Aufnahme durch Protein-Komponenten des Immunsystems, den sogenannten MHC-Proteinen, und ihren Transport an die Zelloberfläche sowie ihren Einbau als Antigene in hoher zeitlicher Auflösung unter dem Fluoreszenzmikroskop beobachten.

"Die Mikrokapsel-Methode eröffnet uns völlig neue, aufregende Perspektiven, lebenden Zellen direkt bei ihrer Arbeit "über die Schulter zu schauen" und auch experimentell in intrazelluläre Vorgänge einzugreifen, ohne dass wir unsere Versuchsobjekte dabei zu sehr stören", kommentiert Sebastian Springer, Professor of Biochemistry and Cell Biology an der Jacobs University, den neuen Forschungsansatz. "Mit Hilfe der Mikroshuttles können wir beispielsweise versuchen, das Verhalten von Zellen gezielt zu manipulieren, indem wir zellfremde funktionelle Proteine oder auch zellfremde Erbinformation einschleusen, um auf vergleichsweise einfachem Weg eine genetische Umprogrammierung zu erreichen." Denkbar seien auch zukünftige medizinische Anwendungen, wie der direkte Transport von Medikamenten in das Innere von Tumor- oder anderen geschädigten Zellen, so Springer weiter.

Matthias Winterhalter, Jacobs-Professor of Biophysics, sieht darüber hinaus auch methodisches Potenzial, Stoffe nicht nur schonend in Zellen hinein zu transportieren, sondern auch gezielt in winzigsten Mengen zu extrahieren: "Wenn wir magnetische Nanoparikel in die Kapselwände einbauen, können wir die Shuttles als Miniaturprobengefäße in die Zellen schicken, sie dann in den Zellen verschließen und über einen Magneten zurückholen, um ihren Inhalt analysieren. Auf diese Weise kann man die Eigenschaften und Inhaltsstoffe einer einzigen Zelle untersuchen, was in dieser Präzision bisher praktisch unmöglich war. Dies ist besonders wichtig, wenn nur geringste Probenmengen zu Verfügung stehen, wie beispielsweise in manchen medizinischen Forschungszusammenhängen oder bei der Entwicklung von effizienten, automatischen Hochdurchsatzanalyseverfahren in der Industrie. Wir arbeiten bereits an einer automatisierten Lösung für alle nötigen Arbeitsschritte", so Winterhalter.

Fragen zu der Studie beantwortet:
Prof. Dr. Sebastian Springer | Professor of Biochemistry and Cell Biology
(http://www.jacobs-university.de/directory/sspringer/index.php)
Tel.: 0421/200-3243 | s.springer@jacobs-university.de

Dr. Kristin Beck | idw
Weitere Informationen:
http://www.jacobs-university.de/
http://www.jacobs-university.de/directory/sspringer/index.php

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden Hinweise auf verknotete Chromosomen im Erbgut
20.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Aus der Moosfabrik
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise