Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


MicroRNAs in plants: Regulation of the regulator

A phosphate switch to fine-tune the protein production in the cells

MicroRNAs are essential regulators of the genetic program in multicellular organisms. Because of their potent effects, the production of these small regulators has itself to be tightly controlled.

That is the key finding of a new study performed by Tübingen scientists at the Max Planck Institute for Developmental Biology. They identified a new component that modulates the production of micro RNAs in thale cress, Arabidopsis thaliana, by the removal of phosphate residues from a micro RNA-biogenesis enzyme. This can be as quick as the turn of a switch, allowing the plant to adapt to changing conditions. In this study, the scientists combined advanced imaging for facile detection of plants with defective microRNA activity with whole genome sequencing for rapid identification of new mutations.

The cell seems to thwart itself: Reading the DNA, a mobile messenger RNA is produced in the cell nucleus, exported to the cytoplasm where it serves as a blueprint for the production of proteins. At the same time, the cell is able to produce micro RNAs that, by binding to specific messenger RNAs, can block protein production or even initiate its destruction. But why does the cell start a costly process and immediately stops it? "Well, the answer lies on the fine balance the cell has to achieve between producing a protein and avoid having an excess of it. Reaching the right level of a protein and its adequate temporal and spatial distribution requires, sometimes, opposed forces," says Pablo Manavella, first author of the study and postdoc in the department of Detlef Weigel at the Max Planck Institute for Developmental Biology. "Once the transcript of the messenger RNA is activated it is quite stable. If you need a quick stop, regulatory mechanisms, such as the micro RNAs, will be able to hold up the process," he explains. The study was carried out in collaboration with scientists from the Center for Plant Molecular Biology (ZMBP) and the Proteome Center of the University of Tübingen.

The production of micro RNAs from its precursors has already been extensively studied, especially in animal cells. "Micro RNAs in plants have evolved in parallel and independently. We had to assume that they could be processed in a different way," Pablo Manavella explains.

The scientists used a methodical trick to study the activity of micro RNAs in cells of thale cress plants. First, they developed a reporter system based on the bioluminescent protein luciferase from firefly; its DNA was integrated in the plant cells. Secondly, the scientists inserted in the plant genome a fragment of DNA containing a precursor of an artificial micro RNA that specifically inhibits luciferase. These plants thus initially showed no light emission despite containing the genes encoding luciferase. In a mass experiment, the scientists then triggered unspecific mutations in thousands of plants. With the aid of a special hypersensitive camera the few shining plants were sorted out. "In all these individuals some part of the micro RNA pathway must have been damaged so that luciferase was no longer silenced by the artificial micro RNA," says Pablo Manavella.

To identify the genes responsible for the failure in silencing luciferase, the scientists made use of a new technology developed at the Max Planck Institute, which enables the rapid detection of causal mutations by whole-genome sequence analysis. "Just a few years ago, this project would have been difficult to complete within two years. Nowadays, whole genome sequencing is a rapid and affordable method. By combining the screening test on luciferase activity with whole genome sequencing we could reduce the study period from years to several months," Pablo Manavella explains. Among the obtained mutants the scientists identified the phosphatase CPL1 as a key component of the microRNA biogenesis pathway. This protein modulates the production of these molecules by removing phosphate residues from HYL1, one of the main co-factors in the pathway, impairing the production of micro RNAs. Once produced these micro RNAs will bind to the corresponding messenger RNAs stopping the production of the protein.

"We have identified one factor able to regulate the activity of the regulators," Pablo Manavella summarizes their results. Micro RNAs represent only one of the of genetic regulation mechanisms among many others; however, in the manner of a switch they provide quick and efficient answers to changing requirements, for example in many developmental processes. In general, micro RNAs in plants are much more specific than in animals, the scientists say. "Plants cannot run away when facing a stressful condition. Therefore they need quick ways to regulate its genes in order to adapt to such situations."
Dr. Pablo Manavella
Max Planck Institute for Developmental Biology, Tübingen
Phone: +49 7071 601-1405
Email: pablo.manavella@­
Prof. Dr. Detlef Weigel
Max Planck Institute for Developmental Biology, Tübingen
Phone: +49 7071 601-1410
Email: detlef.weigel@­
Janna Eberhardt
Max Planck Institute for Developmental Biology, Tübingen
Phone: +49 7071 601-444
Fax: +49 7071 601-359
Email: presse-eb@­
Original publication
Pablo A. Manavella, Jörg Hagmann, Felix Ott, Sascha Laubinger, Mirita Franz, Boris Macek, Detlef Weigel
Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL 1

Cell, Vol. 151, 4

Dr. Pablo Manavella | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>



im innovations-report
in Kooperation mit academics

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie