Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

microRNAs aus Epstein-Barr-Virus lassen Hilferufe der Wirtszelle verstummen

05.10.2016

Das Epstein-Barr-Virus (EBV) hindert infizierte Zellen daran, sich beim Immunsystem bemerkbar zu machen. Dafür produziert es kleine Moleküle, sogenannte microRNAs, die die entsprechenden Warnsignale gar nicht erst entstehen lassen. Diesen bisher unbekannten Mechanismus konnten Wissenschaftler am Helmholtz Zentrum München aufklären.

Das von den englischen Virologen Michael Epstein und Yvonne M. Barr beschriebene EBV findet sich bei einem Großteil der Weltbevölkerung, wird aber zumeist vom Immunsystem in Schach gehalten. Trotzdem gelingt es dem Körper nicht, den Erreger gänzlich zu beseitigen.


Das Epstein-Barr-Virus (EBV) hindert infizierte Zellen daran, sich beim Immunsystem bemerkbar zu machen.

Quelle: Prof. Georg Bornkamm / Helmholtz Zentrum München

Warum das so ist, will das Wissenschaftlerteam um Prof. Wolfgang Hammerschmidt herausfinden. Er ist Leiter der Abteilung Genvektoren (AGV) am Helmholtz Zentrum München und Mitglied des Deutschen Zentrums für Infektionsforschung (DZIF).

Raffinierter Winzling: Virus macht sich unsichtbar

„Unsere aktuellen Arbeiten zeigen, dass das Virus die infizierte Zelle durch microRNAs davon abhält, das Immunsystem zu alarmieren“, fasst der Studienleiter die Erkenntnisse zusammen. EBV nistet sich zumeist in B-Zellen ein, einer Klasse der weißen Blutkörperchen. Werden sie von EBV infiziert, bringt das Virus diese Zellen dazu, sich verstärkt zu vermehren, um immer mehr Viren zu produzieren. Die B-Zellen reagieren in der Regel mit einem Notruf an das Immunsystem: Auf ihrer Oberfläche präsentieren sie Teile des Virus und scheiden Entzündungsbotenstoffe aus, um die Immunzellen anzulocken.

„Genau diesen Hilferuf unterdrücken die vom Virus produzierten microRNAs nach der Infektion“, verdeutlicht AGV-Wissenschaftler Manuel Albanese. Sein Kollege Takanobu Tagawa ergänzt: „Die microRNAs lassen erst gar nicht zu, dass die dafür notwendigen Proteine in der Wirtszelle produziert werden.“ Die beiden Doktoranden teilen sich jeweils die Erstautorschaft an den beiden Publikationen in ‚Proceedings of the National Academy of Sciences‘ und im ‚Journal of Experimental Medicine‘.*

Neuer Ansatz auch für die Krebsforschung denkbar

Da das EBV die Zellteilung der B-Zellen antreibt und auf diese Weise auch für Krebserkrankungen verantwortlich ist, überlegen die Forscher, wie sich die Erkenntnisse nun auch in der Krebsforschung anwenden lassen. „Der von uns gefundene Mechanismus führt dazu, dass Killer-T-Zellen und Helfer-T-Zellen untätig bleiben, obwohl die kranke Zelle ihnen gegenübersteht“, so Studienleiter Hammerschmidt.** „Wäre es möglich, diese Blockade auszuhebeln, wäre das ein interessanter Ansatz für Krebserkrankungen: Das Immunsystem könnte Tumore, die durch EBV ausgelöst werden, womöglich besser bekämpfen.“ Klinische Studien zu Wirkstoffen, die bestimmte microRNAs ausschalten, liefen aktuell bereits in anderen Zusammenhängen, so die Autoren.

Weitere Informationen

* microRNAs (miRNAs) sind nichtkodierende RNAs, die eine wichtige Rolle bei der Genregulation und insbesondere beim Stilllegen von Genen spielen. Im Allgemeinen weisen sie eine Größe von 21 bis 23 Nukleotiden auf, sind also sehr kurz - daher der Name.

** Killer-T-Zellen (auch CD8-T-Zellen genannt) können die infizierten Zellen zerstören und so die Vermehrung des Virus verhindern. Helfer-T-Zellen (auch CD4-T-Zellen genannt) unterstützen sie dabei und sorgen zudem für die Bildung von Antikörpern gegen das Virus.

Hintergrund:
Bereits vor etwa einem Jahr hatten Wissenschaftler der Abteilung Genvektoren am Helmholtz Zentrum München einen weiteren Mechanismus entdeckt, den das EBV nutzt, um sich in menschlichen Zellen zu verstecken. Hier spielte das Protein LMP2A eine entscheidende Rolle: http://www.helmholtz-muenchen.de/presse-medien/pressemitteilungen/2015/pressemit...

Original-Publikationen:
Tagawa, T. & Albanese, M. et al. (2016): Epstein-Barr Viral miRNAs Inhibit Antiviral CD4+ T Cell Responses Targeting IL-12 and Peptide Processing. Journal of Experimental Medicine, doi: 10.1084/jem.20160248

Albanese, M. & Tagawa, T. et al. (2016): Epstein-Barr virus miRNAs inhibit immune surveillance by virus-specific CD8+ T cells. Proceedings of the National Academy of Sciences (PNAS), doi: 10.1073/pnas.1605884113

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. http://www.helmholtz-muenchen.de

Die Abteilung Genvektoren erforscht das Epstein-Barr Virus (EBV), ein Tumorvirus des Menschen, und dessen Beitrag zu verschiedenen Erkrankungen. Ziel ist es herauszufinden, wie das Immunsystem im gesunden Virusträger das EBV und andere menschliche Herpesviren in Schach hält, und welche Immunkontrollen im Patienten versagen. Die Entstehung von Tumoren des Immunsystems - Leukämien und Lymphome – ist ein weiterer Schwerpunkt. Mittelfristig sollen neue Medikamente, Impfstoffe gegen EBV und neue Zelltherapien entwickelt werden, um Infektionserkrankungen, Leukämien und Lymphome zu behandeln oder zu verhindern. http://www.helmholtz-muenchen.de/en/agv

Im Deutschen Zentrum für Infektionsforschung (DZIF) entwickeln bundesweit mehr als 500 Wissenschaftler aus 35 Institutionen gemeinsam neue Ansätze zur Vorbeugung, Diagnose und Behandlung von Infektionskrankheiten. Ziel ist die sogenannte Translation: die schnelle, effektive Umsetzung von Forschungsergebnissen in die klinische Praxis. Damit bereitet das DZIF den Weg für die Entwicklung neuer Impfstoffe, Diagnostika und Medikamente gegen Infektionen. http://www.dzif.de

Ansprechpartner für die Medien:
Abteilung Kommunikation, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-Mail: presse@helmholtz-muenchen.de

Fachlicher Ansprechpartner:
Prof. Dr. Wolfgang Hammerschmidt, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Abteilung Genvektoren, Marchioninistraße 25, 81377 München - Tel. +49 89 3187 1506, E-Mail: hammerschmidt@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Weitere Berichte zu: B-Zellen DZIF EBV Epstein-Barr Epstein-Barr-Virus Genvektoren Helmholtz Immunsystem Umwelt Virus Wirtszelle Zellen miRNAs

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung
26.07.2017 | Universität Bielefeld

nachricht Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa
26.07.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops