MHH-Forscher filmen Geburt von Stammzellen

In einer Petrischale sieht man zunächst rot leuchtende, langgestreckte Zellen, nach und nach verlieren sie ihre charakteristische Form, die Ausläufer gehen zurück, die Zellen runden sich ab, sie verschmelzen mit anderen Zellen zu einem rot leuchtenden Haufen. Plötzlich leuchten immer mehr Zellen im Zellklumpen grün. Im Zeitraffer dauert dieser Prozess nur wenige Sekunden.

Im Labor hingegen einige Tage. Die von Dr. Dr. Axel Schambach geleitete Arbeitsgruppe „Hematopoietic Cell Therapy“ in der Abteilung für Experimentelle Hämatologie der Medizinischen Hochschule Hannover (MHH) im Exzellenzcluster REBIRTH (Von Regenerativer Biologie zu Rekonstruktiver Therapie) konnte nun, dank eines neuentwickeltem farbkodierten Gen-Taxis, gemeinsam mit Dr. Timm Schröder vom Helmholtz Zentrum München sowie Dr. Tobias Cantz und Professor Dr. Hans Schöler, Arbeitsgruppe „Stem Cell Biology“, REBIRTH, erstmals die Verwandlung von Körperzellen in induzierte pluripotente Stammzellen (iPS-Zellen) filmen.

iPS-Zellen sind für die Forscher besonders interessant, da sie quasi Alleskönner darstellen und sich ähnlich wie embryonale Stammzellen in unterschiedliche Zelltypen entwickeln können. Die Wissenschaftler veröffentlichten ihre Ergebnisse in der aktuellen Ausgabe des renommierten Magazins Molecular Therapy der Nature-Verlagsgruppe. „Wir konnten mittels eines neuartigen experimentellen Systems im Zeitraffer die Umwandlung von Fibroblasten zu iPS-Zellen zeigen“, erklärt Professor Dr. Christopher Baum, Leiter der Abteilung für Experimentelle Hämatologie.

Viren haben sich im Laufe der Evolution optimal an ihre Wirtszellen angepasst und sind so ideale Überträger für Gene. Forscher setzen daher virale Vektoren als Gen-Taxi ein. Das Team entwickelte nun ein optimiertes Gen-Taxi, mit dem sie die sogenannten Reprogrammierungsgene in Körperzellen einschleusten. Diese Gene bewirken, dass die Zellen ihren Stoffwechsel ändern und verstärkt bestimmte Eiweiße produzieren. Auf diese Weise versetzen die Forscher die Zellen in den embryonalen Zustand zurück. Der Clou des neuen Vektors: Er enthält einen Farbcode und schaltet sich von selbst ab. Werden die eingeschleusten Gene in den Körperzellen aktiviert, leuchten rot. Ist die Umwandlung der Körperzellen in den embryonalen Zustand erreicht, schalten sich die Gene ab, ein grün leuchtendes Reportergen wird aktiviert – die Zellen leuchten grün. Die Forscher schossen in Intervallen von wenigen Minuten Bilder und setzten diese zu einer Zeitrafferaufnahme zusammen. So konnten sie einzelne Zellen kontinuierlich verfolgen. „Mit diesem System können wir nun feinste dynamische Prozesse erforschen, die frühen Reprogrammierungsvorgänge besser verstehen lernen oder Veränderungen nach Gabe von Medikamenten erfassen“, sagt Dr. Dr. Schambach.

Weitere Informationen erhalten Sie bei Professor Dr. Christopher Baum, Leiter der Abteilung für Experimentelle Hämatologie, (0511) 532-6067, baum.christopher@mh-hannover.de.

Die Originalarbeit finden Sie unter http://www.nature.com/mt/journal/vaop/ncurrent/full/mt2010314a.html.

Ein Video zur Veröffentlichung finden Sie unter http://www.mh-hannover.de/videos.html. In der Zeitrafferaufnahme sehen Sie dank des neuentwickelten Vektors, wie sich Körperzellen in induzierte pluripotente Zellen verwandeln.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Der Klang der idealen Beschichtung

Fraunhofer IWS transferiert mit »LAwave« lasergestützte Schallanalyse von Oberflächen in industrielle Praxis. Schallwellen können auf Oberflächen Eigenschaften verraten. Parameter wie Beschichtungsqualität oder Oberflächengüte von Bauteilen lassen sich mit Laser und…

Individuelle Silizium-Chips

… aus Sachsen zur Materialcharakterisierung für gedruckte Elektronik. Substrate für organische Feldeffekttransistoren (OFET) zur Entwicklung von High-Tech-Materialien. Wie leistungsfähig sind neue Materialien? Führt eine Änderung der Eigenschaften zu einer besseren…

Zusätzliche Belastung bei Knochenmarkkrebs

Wie sich Übergewicht und Bewegung auf die Knochengesundheit beim Multiplen Myelom auswirken. Die Deutsche Forschungsgemeinschaft (DFG) fördert ein Forschungsprojekt der Universitätsmedizin Würzburg zur Auswirkung von Fettleibigkeit und mechanischer Belastung auf…

Partner & Förderer