Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Methode zur besseren Erkennung von Tumoren: Meilenstein in der Krebsdiagnostik

18.11.2015

Krebszellen im Körper finden und zugleich erkennen, ob sie gefährlich sind – diesem Traum sind Forscher der Jacobs University in Bremen und des Leibniz-Instituts für molekulare Pharmakologie in Berlin nun einen großen Schritt näher gekommen. Sie haben eine Methode entwickelt, um mit hoher Empfindlichkeit Substanzen abzubilden, die bösartige Tumore anzeigen.

Die Magnetresonanztomographie, kurz MRT, gehört heutzutage zum medizinischen Alltag. Mit Hilfe von Magnetfeldern liefert sie Bilder vom Inneren des menschlichen Körpers. Diese können beispielsweise helfen, krankhafte Veränderungen der Organe oder Tumore zu erkennen.


Meilenstein in der Krebsdiagnostik: Forscher der Jacobs University entwickelt Methode zur besseren Erkennung von Tumoren

Jacobs University

Dass es bei der Visualisierung ganz entscheidend auf die Wechselwirkung mit den Kontrastmitteln ankommt, hat jetzt erneut eine Forschergruppe bestätigt, an der auch Dr. Andreas Hennig von der Jacobs University in Bremen beteiligt war. Sie entdeckte ein Molekül, das den Kontrast der Aufnahmen im Vergleich zu bisherigen Mitteln etwa 100-fach verbessert. Der Name des Super-Kandidaten: Cucurbituril.

Die Magnetresonanztomographie basiert auf einer Wechselwirkung aus Magnetfeldern und Radiowellen mit Wasserstoffatomen. Neben dem Wasserstoff kann bei dem Verfahren auch das Edelgas Xenon genutzt werden, um Bilder von unserem Innenleben zu erzeugen. Mit speziell vorbereitetem Xenon können Signale des harmlosen Edelgases, das vom Patienten eingeatmet wird, im MRT deutlich empfindlicher nachgewiesen werden als die des Wasserstoffs.

Bei der jetzt von den Wissenschaftlern entwickelten Methode funktionieren die ringförmigen Cucurbiturile wie eine Schleuse. Die Xenon-Atome werden durch den Ring geschleust und quasi markiert. Das im MRT ausgesandte Signal kann dann Areale mit und ohne Cucurbiturile klar unterscheiden. Solche „Schleuser-Moleküle” kannte man schon früher. Aber das Cucurbituril kann sehr viel mehr Xenon in der selben Zeit markieren und die Messung dadurch deutlich genauer machen.

In ihrer jüngsten Untersuchung treiben Hennig und seine Berliner Kollegen vom Leibniz-Institut für Molekulare Pharmakologie Berlin (FMP) den Schleusen-Trick nun noch einen Schritt weiter. Sie haben herausgefunden, wie man das Schleusentor des Cucurbiturils gezielt öffnen und schließen kann.

Als Schlüssel dient ein Enzym namens Lysin-Decarboxylase. Dieses Enzym erzeugt einen Stoff, der den Hohlraum des Cucurbituril-Rings besetzt. In seiner Gegenwart schließt das Cucurbituril also seine Schleusen. In der Folge kann weniger Xenon markiert werden, entsprechend verändert sich das vom MRT gemessene Signal.

Was das ganze nun mit Krebs zu tun hat? Die Lysin-Decarboxylase ist mehr als nur der Schlüssel zum Cucurbituril. Das Enzym spielt auch eine entscheidende Rolle beim Wachstum von Tumoren und kann zeigen, ob ein Tumor bösartig ist. Im Umkehrschluss können Hennig und seine Kollegen also aus blockierten Schleusen – die anzeigen, dass Lysin-Decarboxylase vorhanden ist – auf die Bösartigkeit eines Tumors schließen.

„Diese Schleusen schalten zu können, ist ein Riesenschritt auf dem Weg zu einer effizienten Früherkennung von Krebs. Besonders bemerkenswert ist, wie effizient wir sie öffnen und schließen konnten“, erklärt Hennig. „Das unterstreicht das große Potenzial unserer Methode für die Medizin.

Die Xenon-MRT, idealerweise mit einer Vielzahl von Kontrastmitteln, die verschiedene Zelltypen markieren, könnte schon kleine Tumorherde deutlich zeigen und individuelle Diagnosen ganz ohne Biopsien erlauben. Die Methode hat zudem den großen Vorteil, dass es im Gegensatz zu klassischen, radioaktiven Kontrastmitteln keine nennenswerte Strahlenbelastung für den Patienten gibt.”

Ganz so weit ist es allerdings noch nicht. Weiterführende Studien sind nötig, um die Methode aus dem Reagenzglas zum Patienten zu bringen. Zunächst wollen Hennig und sein Kollege Dr. Leif Schröder vom FMP die Empfindlichkeit der Messung in Zellkulturen verbessern. Außerdem gilt es, den Enzymschlüssel noch präziser zu bedienen und nach weiteren Schlüsselmolekülen suchen.

„Unsere ersten Experimente mit Cucurbituril waren ein ziemlicher Schuss ins Blaue. Die entstandene Methode ist viel sensitiver, als wir jemals erhofft hätten. Das war auch für uns eine Riesenüberraschung”, erzählt Hennig. „Es ist ein Meilenstein für die Krebsdiagnostik, den wir nun gezielt weiterentwickeln werden.”

Originalveröffentlichungen:
Matthias Schnurr, Jagoda Sloniec-Myszk, Jörg Döpfert, Leif Schröder und Andreas Hennig: Supramolekulare Assays zur Lokalisation von Enzymaktivität durch Verdrängungs-induzierte Änderungen in der Magnetisierungstransfer-NMR-Spektroskopie mit hyperpolarisiertem 129Xe. Angewandte Chemie, in press (2015).

Deutsche Ausgabe: DOI: 10.1002/ange.201507002
Internationale Ausgabe: DOI: 10.1002/anie.20150700

Identification, classification, and signal amplification capabilities of high-turnover gas binding hosts in ultra-sensitive NMR. Chemical Science, 2015, 6, 6069 – 6075.
DOI: 10.1039/C5SC01400J

Fragen beantwortet:
Dr. Andreas Hennig | Department of Life Sciences and Chemistry
a.hennig@jacobs-university.de | Tel.: +49 421 200-3625

Kristina Logemann | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.jacobs-university.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics