Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Methan auf dem Mars deutet nicht auf Leben

30.05.2012
Starke UV-Strahlung auf dem Roten Planeten setzt Methan aus organischem Material frei, das Meteoriten auf die Oberfläche mitbringen

Es war eine Sensation, als Wissenschaftler vor neun Jahren Methan in der Marsatmosphäre entdeckten. Für viele gilt das Gasvorkommen als klarer Hinweis für Leben auf dem unwirtlichen Planeten, da Methan auf der Erde vorwiegend durch biologische Vorgänge entsteht. Andere vermuten geologische Prozesse wie Vulkane als Ursache. Doch bis jetzt fehlt ein Beweis, was die tatsächliche Methanquelle ist.


Methankonzentration auf dem Mars: Die Grafik zeigt die berechneten Methankonzentrationen in parts per billion (ppb) auf dem Mars während des Sommers auf der Nordhalbkugel. Violett und blau weisen auf wenig Methan hin, rote Bereiche signalisieren große Mengen. © NASA

Forscher des Max-Planck-Instituts für Chemie in Mainz und der Universitäten in Utrecht und Edinburgh konnten jetzt zeigen, dass Methan aus einem Meteoriten entweicht, wenn man ihn unter Mars-Bedingungen mit ultraviolettem Licht bestrahlt. Auf der Marsoberfläche treffen kontinuierlich Meteorite und interplanetarer Staub aus dem Weltall auf, die kohlenstoffhaltige Verbindungen mit sich bringen. Daraus schließen die Forscher, dass aus ihnen durch energiereiche UV-Strahlung Methan entsteht.

Seit Wissenschaftler im Jahr 2003 größere Mengen von Methan in der Mars-Atmosphäre identifizierten, wird viel über dessen Quelle spekuliert. Die bekannteste Hypothese besagt, dass Mikroorganismen das Methan bilden und es sich somit um ein Indiz für Leben auf dem Roten Planeten handelt. Eine andere vermutet die Ursache in geologischen Methanquellen im Marsinneren. Bisher kann jedoch keine der Theorien die große Menge von 200 bis 300 Tonnen Methan pro Jahr, die auf dem Mars Hochrechnungen zufolge produziert werden, schlüssig erklären.

Ganz ohne Marsexpedition und nur mit Hilfe eines Meteoriten fanden Forscher des Max-Planck-Instituts für Chemie in Mainz und der Universitäten in Utrecht und Edinburgh jetzt eine wesentliche Quelle. „Methan entsteht aus unzähligen kleinen Mikro-Meteoriten und interplanetaren Staubteilchen, welche aus dem Weltall auf der Marsoberfläche landen“, erläutert Frank Keppler, Erstautor der jetzt im Forschungsmagazin Nature veröffentlichten Studie. „Die Energie liefert die extrem starke ultraviolette Strahlung“, ergänzt der Atmosphärenchemiker.

UV-Licht zersetzt Kohlenstoff-Verbindungen im Meteoritengestein

Im Gegensatz zur Erde fehlt dem Mars eine schützende Ozonschicht, die den größten Teil der UV-Strahlung aus dem Weltall absorbieren könnte. Zudem ist die Marsatmosphäre sehr dünn, so dass im Vergleich zur Erde ein wesentlich geringerer Teil des Meteoritenmaterials beim Eintritt in die Atmosphäre verglüht.

Zusammen mit Kollegen aus Großbritannien und den Niederlanden bestrahlten die Mainzer Forscher Proben des Meteoriten Murchison mit ultraviolettem Licht. „Der Meteorit enthält mehrere Prozent Kohlenstoff und hat eine ähnliche chemische Zusammensetzung wie die Hauptmenge des Meteoritengesteins, das auf dem Mars landet“, sagt der Kosmochemiker Ulrich Ott. Der 4,6 Milliarden Jahre alte Meteorit schlug 1969 in der australischen Stadt Murchison ein. Die Forscher wählten bei der UV-Bestrahlung identische Bedingungen wie auf dem Mars, wodurch fast augenblicklich beträchtliche Mengen Methan aus dem Meteoriten entwichen. Ihre Schlussfolgerung: Kohlenstoffhaltige Verbindungen im Meteoritengestein werden durch das energiereiche UV-Licht zersetzt, wobei sich Methanmoleküle bilden.

Die Methanproduktion aus Meteoriten hängt von der Temperatur ab

Da die Temperatur auf dem Roten Planeten von minus 143 Grad Celsius an den Polen bis zu plus 17 Grad Celsius am Marsäquator schwankt, untersuchten die Wissenschaftler die Meteoritenproben auch bei entsprechenden Temperaturen. Je wärmer es wurde, umso mehr Methan gaben die Meteoritenstückchen ab. Diese Temperaturabhängigkeit stimmt auch mit den unterschiedlichen Methankonzentrationen an verschiedenen Stellen der Marsatmosphäre überein. So fand man in Infrarot-Spektren das meiste Methan in der Äquatorgegend, dort wo es für Marsverhältnisse am wärmsten ist.

Die Ergebnisse des Teams um Frank Keppler dürften all diejenigen, die fest an den biologischen Ursprungs des Methans glauben, ernüchtern. Ausschließen können die Forscher die Hypothese der Marsmikroben aber nicht, denn während der hier gefundene Prozess zwar unvermeidbar ist, ist es durchaus möglich, dass weitere Prozesse zur Methanproduktion beitragen. Mehr Details zur Entstehung von Methan und vielleicht sogar eine abschließende Klärung, ob es Leben auf dem Mars gibt, erhoffen sich die Forscher vom Mars Rover Curiosity, der laut NASA Anfang August auf unserem Nachbarplaneten landen soll.

Ansprechpartner

Dr. Frank Keppler
Max-Planck-Institut für Chemie
Telefon: +49 6131 305-4800
Email: frank.keppler@­mpic.de
Dr. Ulrich Ott
Max-Planck-Institut für Chemie
Telefon: +49 160 5467-230
Email: uli.ott@­mpic.de
Dr. Susanne Benner
Max-Planck-Institut für Chemie
Telefon: +49 6131 305-3000
Fax: +49 6131 305-3009
Email: susanne.benner@­mpic.de
Originalveröffentlichung
Frank Keppler, Ivan Vigano, Andy McLeod, Ulrich Ott, Marion Früchtl und Thomas Röckmann
Ultraviolet radiation induced methane emissions from meteorites and the Martian atmosphere

Nature, 31. Mai 2012; DOI: 10.1038/nature11203

Dr. Frank Keppler | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5821687/mars_methan_leben

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften