Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Methan auf dem Mars deutet nicht auf Leben

30.05.2012
Starke UV-Strahlung auf dem Roten Planeten setzt Methan aus organischem Material frei, das Meteoriten auf die Oberfläche mitbringen

Es war eine Sensation, als Wissenschaftler vor neun Jahren Methan in der Marsatmosphäre entdeckten. Für viele gilt das Gasvorkommen als klarer Hinweis für Leben auf dem unwirtlichen Planeten, da Methan auf der Erde vorwiegend durch biologische Vorgänge entsteht. Andere vermuten geologische Prozesse wie Vulkane als Ursache. Doch bis jetzt fehlt ein Beweis, was die tatsächliche Methanquelle ist.


Methankonzentration auf dem Mars: Die Grafik zeigt die berechneten Methankonzentrationen in parts per billion (ppb) auf dem Mars während des Sommers auf der Nordhalbkugel. Violett und blau weisen auf wenig Methan hin, rote Bereiche signalisieren große Mengen. © NASA

Forscher des Max-Planck-Instituts für Chemie in Mainz und der Universitäten in Utrecht und Edinburgh konnten jetzt zeigen, dass Methan aus einem Meteoriten entweicht, wenn man ihn unter Mars-Bedingungen mit ultraviolettem Licht bestrahlt. Auf der Marsoberfläche treffen kontinuierlich Meteorite und interplanetarer Staub aus dem Weltall auf, die kohlenstoffhaltige Verbindungen mit sich bringen. Daraus schließen die Forscher, dass aus ihnen durch energiereiche UV-Strahlung Methan entsteht.

Seit Wissenschaftler im Jahr 2003 größere Mengen von Methan in der Mars-Atmosphäre identifizierten, wird viel über dessen Quelle spekuliert. Die bekannteste Hypothese besagt, dass Mikroorganismen das Methan bilden und es sich somit um ein Indiz für Leben auf dem Roten Planeten handelt. Eine andere vermutet die Ursache in geologischen Methanquellen im Marsinneren. Bisher kann jedoch keine der Theorien die große Menge von 200 bis 300 Tonnen Methan pro Jahr, die auf dem Mars Hochrechnungen zufolge produziert werden, schlüssig erklären.

Ganz ohne Marsexpedition und nur mit Hilfe eines Meteoriten fanden Forscher des Max-Planck-Instituts für Chemie in Mainz und der Universitäten in Utrecht und Edinburgh jetzt eine wesentliche Quelle. „Methan entsteht aus unzähligen kleinen Mikro-Meteoriten und interplanetaren Staubteilchen, welche aus dem Weltall auf der Marsoberfläche landen“, erläutert Frank Keppler, Erstautor der jetzt im Forschungsmagazin Nature veröffentlichten Studie. „Die Energie liefert die extrem starke ultraviolette Strahlung“, ergänzt der Atmosphärenchemiker.

UV-Licht zersetzt Kohlenstoff-Verbindungen im Meteoritengestein

Im Gegensatz zur Erde fehlt dem Mars eine schützende Ozonschicht, die den größten Teil der UV-Strahlung aus dem Weltall absorbieren könnte. Zudem ist die Marsatmosphäre sehr dünn, so dass im Vergleich zur Erde ein wesentlich geringerer Teil des Meteoritenmaterials beim Eintritt in die Atmosphäre verglüht.

Zusammen mit Kollegen aus Großbritannien und den Niederlanden bestrahlten die Mainzer Forscher Proben des Meteoriten Murchison mit ultraviolettem Licht. „Der Meteorit enthält mehrere Prozent Kohlenstoff und hat eine ähnliche chemische Zusammensetzung wie die Hauptmenge des Meteoritengesteins, das auf dem Mars landet“, sagt der Kosmochemiker Ulrich Ott. Der 4,6 Milliarden Jahre alte Meteorit schlug 1969 in der australischen Stadt Murchison ein. Die Forscher wählten bei der UV-Bestrahlung identische Bedingungen wie auf dem Mars, wodurch fast augenblicklich beträchtliche Mengen Methan aus dem Meteoriten entwichen. Ihre Schlussfolgerung: Kohlenstoffhaltige Verbindungen im Meteoritengestein werden durch das energiereiche UV-Licht zersetzt, wobei sich Methanmoleküle bilden.

Die Methanproduktion aus Meteoriten hängt von der Temperatur ab

Da die Temperatur auf dem Roten Planeten von minus 143 Grad Celsius an den Polen bis zu plus 17 Grad Celsius am Marsäquator schwankt, untersuchten die Wissenschaftler die Meteoritenproben auch bei entsprechenden Temperaturen. Je wärmer es wurde, umso mehr Methan gaben die Meteoritenstückchen ab. Diese Temperaturabhängigkeit stimmt auch mit den unterschiedlichen Methankonzentrationen an verschiedenen Stellen der Marsatmosphäre überein. So fand man in Infrarot-Spektren das meiste Methan in der Äquatorgegend, dort wo es für Marsverhältnisse am wärmsten ist.

Die Ergebnisse des Teams um Frank Keppler dürften all diejenigen, die fest an den biologischen Ursprungs des Methans glauben, ernüchtern. Ausschließen können die Forscher die Hypothese der Marsmikroben aber nicht, denn während der hier gefundene Prozess zwar unvermeidbar ist, ist es durchaus möglich, dass weitere Prozesse zur Methanproduktion beitragen. Mehr Details zur Entstehung von Methan und vielleicht sogar eine abschließende Klärung, ob es Leben auf dem Mars gibt, erhoffen sich die Forscher vom Mars Rover Curiosity, der laut NASA Anfang August auf unserem Nachbarplaneten landen soll.

Ansprechpartner

Dr. Frank Keppler
Max-Planck-Institut für Chemie
Telefon: +49 6131 305-4800
Email: frank.keppler@­mpic.de
Dr. Ulrich Ott
Max-Planck-Institut für Chemie
Telefon: +49 160 5467-230
Email: uli.ott@­mpic.de
Dr. Susanne Benner
Max-Planck-Institut für Chemie
Telefon: +49 6131 305-3000
Fax: +49 6131 305-3009
Email: susanne.benner@­mpic.de
Originalveröffentlichung
Frank Keppler, Ivan Vigano, Andy McLeod, Ulrich Ott, Marion Früchtl und Thomas Röckmann
Ultraviolet radiation induced methane emissions from meteorites and the Martian atmosphere

Nature, 31. Mai 2012; DOI: 10.1038/nature11203

Dr. Frank Keppler | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5821687/mars_methan_leben

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt
22.05.2018 | Technische Universität München

nachricht Designerzellen: Künstliches Enzym kann Genschalter betätigen
22.05.2018 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Kosmische Ravioli und Spätzle

Die inneren Monde des Saturns sehen aus wie riesige Ravioli und Spätzle. Das enthüllten Bilder der Raumsonde Cassini. Nun konnten Forscher der Universität Bern erstmals zeigen, wie diese Monde entstanden sind. Die eigenartigen Formen sind eine natürliche Folge von Zusammenstössen zwischen kleinen Monden ähnlicher Grösse, wie Computersimulationen demonstrieren.

Als Martin Rubin, Astrophysiker an der Universität Bern, die Bilder der Saturnmonde Pan und Atlas im Internet sah, war er verblüfft. Die Nahaufnahmen der...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Raumschrott im Fokus

Das Astronomische Institut der Universität Bern (AIUB) hat sein Observatorium in Zimmerwald um zwei zusätzliche Kuppelbauten erweitert sowie eine Kuppel erneuert. Damit stehen nun sechs vollautomatisierte Teleskope zur Himmelsüberwachung zur Verfügung – insbesondere zur Detektion und Katalogisierung von Raumschrott. Unter dem Namen «Swiss Optical Ground Station and Geodynamics Observatory» erhält die Forschungsstation damit eine noch grössere internationale Bedeutung.

Am Nachmittag des 10. Februars 2009 stiess über Sibirien in einer Höhe von rund 800 Kilometern der aktive Telefoniesatellit Iridium 33 mit dem ausgedienten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

22.05.2018 | Biowissenschaften Chemie

Mikroskopie der Zukunft

22.05.2018 | Medizintechnik

Designerzellen: Künstliches Enzym kann Genschalter betätigen

22.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics