Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Merlin: zauberhafter Schalter neuronaler Netzwerke

25.08.2010
Forscher des Fritz-Lipmann-Instituts Jena und der Universitätskliniken Jena und Bonn konnten eine neue Rolle des Merlin-Proteins aufdecken, dessen Verlust zu Hirntumoren führt: Aktives Merlin hemmt die Reifung und Vernetzung von Nervenzellen während der Gehirnentwicklung.

Wissenschaftlich bekannt wurde das Merlin-Protein durch seine Rolle als sogenannter Tumorsuppressor: Es kontrolliert als Stop-Signal die ungehinderte Vermehrung von Zellen, z.B. in verletzten Geweben. Fällt Merlin aus, wie in der erblichen Erkrankung Neurofibromatose Typ 2, entstehen gutartige Nerventumore im Gehirn und Rückenmark. Schwerhörigkeit, Schwindel und Augenerkrankungen sind meist die Folge. Was ist aber die normale, physiologische Funktion des Merlin-Proteins?

Zur Beantwortung dieser Frage untersuchten die Forscher um Dr. Helen Morrison vom Leibniz-Institut für Altersforschung - Fritz-Lipmann-Institut (FLI) in Jena, zusammen mit Kollegen der Universitätskliniken Jena und Bonn, das Gehirn heranwachsender Mäuse. Hier konnten sie das Merlin-Protein, wie bereits früher bekannt, in den Zellen entdecken, die die Nervenzellen stützen und umgeben (Gliazellen und Schwann-Zellen). Erstmalig spürten sie Merlin aber in den Nervenzellen selbst auf, so auch in den Purkinjezellen des Kleinhirns. In reifenden Purkinjezellen war Merlin im Zellkörper (Soma), dessen feinen Verästelungen (Dendriten) und auch dem langen Axon-Fortsatz zu finden. “Dieser überraschende Befund beflügelte uns, der genauen Funktion von Merlin in den Nervenzellen nachzuspüren“, so die Forschungsgruppenleiterin Morrison.

Hierfür kamen verhaltensauffällige Mäuse zum Einsatz, deren Purkinjezellen aufgrund von Entwicklungsstörungen verkleinerte und weniger verzweigte Dendriten aufweisen. Die Forscher fanden, dass in den Dendriten dieser Nervenzellen die Anzahl der Merlin-Proteine deutlich reduziert war. Der gleiche Befund trat auch in Nervenzellen normaler, bereits ausgewachsener Mäuse auf. „Wir vermuteten daher, dass Merlin bei der Entwicklung der Dendriten eine Rolle spielt“, sagt A. Schulz, Mitarbeiter am FLI und medizinischer Doktorand am Universitätsklinikum Jena. Er analysierte die Merlin-Proteine der Mäusenerven in enger Kooperation mit Prof. Stephan Baader vom Institut für Anatomie der Universität Bonn.

In primären Nervenzellen, die im Labor gezüchtet wurden, bestätigte sich der Verdacht: Wurde die Produktion von Merlin experimentell erhöht, kam es zu einer deutlichen Abnahme des Dendritenwachstums. Umgekehrt führte die Hemmung von Merlin zur vermehrten Bildung dieser komplexen Nervenzellfortsätze. „Wir konnten aber auch auf biochemischer Ebene bestätigen, dass Merlin die Entwicklung der Dendriten reguliert“, so Morrison. Schon früher zeigte sie mit ihren Kollegen, dass Merlin-Proteine durch Abspalten einer speziellen Phosphatgruppe aktiviert werden. In den Nervenzellkulturen konnte sie nun nachweisen, dass ausschließlich aktiviertes Merlin das Wachstum der Dendriten hemmt.

Die stark verästelten Dendriten stellen über Synapsen den Kontakt zu anderen Nervenzellen her und empfangen deren Nervensignale. Durch seinen Einfluss auf die Dendritenausbildung ist Merlin damit direkt an der Verschaltung solcher neuronalen Netzwerke beteiligt. Wie wichtig die Funktion der Dendriten ist, erkennt man auch daran, dass verschiedene Erkrankungen aus deren Fehlfunktion entstehen oder damit zusammenhängen. So werden in Patienten, die an Autismus, Schizophrenie, oder Depressionen leiden, häufig veränderte Dendritenstrukturen beobachtet. Ist Merlin also möglicherweise auch an der Ausprägung autistischer Syndrome beteiligt? „Zumindest wurde schon früher beschrieben, dass Mutationen des für Merlin kodierenden Neurofibromatose 2-Gens mit autistischen Erkrankungen einhergehen“, bestätigt Prof. P. Herrlich, Genetiker und Direktor des Fritz-Lipmann-Instituts. Mit den neuen Erkenntnissen zu Merlins Regulation der Nervenzellen bekommt das FLI weiteren Aufwind in der Erforschung neurodegenerativer Erkrankungen.

Kontakt:
Dr. Helen Morrison
Leibniz-Institut für Altersforschung - Fritz-Lipmann-Institut (FLI)
Beutenbergstr. 11, D-07745 Jena
Tel: +49-3641-65-6139, Fax: +49-3641-656133, e-mail: helen@fli-leibniz.de
Originalveröffentlichung:
Merlin inhibits neurite outgrowth in the CNS.
Schulz A, Geissler KJ, Kumar S, Leichsenring G, Morrison H, Baader SL
J Neurosci. 2010, 30, 10177-86

Dr. Eberhard Fritz | idw
Weitere Informationen:
http://www.fli-leibniz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften