Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Menschliches Gewebe aus dem 3D-Drucker

09.05.2014

Am Freitag, 9. Mai, erfolgt der offizielle Startschuss für den weltweit ersten internationalen Master-Studiengang „Biofabrikation“. An dem Programm beteiligt sind Universitäten aus Australien, den Niederlanden und Deutschland. Deutscher Vertreter ist die Universität Würzburg.

Es hört sich ein wenig wie Science Fiction an: Unfallopfer bekommen Ersatz für ihre zerstörten Knochen, der exakt an die defekte Stelle passt. Das Material stammt aus dem 3D-Drucker und wurde dort schichtweise mit Hilfe spezieller Biomaterialien aufgebaut, in denen sich anschließend Zellen des Patienten ansiedeln konnten.

Aber nicht nur Knochen, auch Muskeln, Nerven und Haut kann der Drucker für jeden Patienten passgenau herstellen. Weil das Implantat aus körpereigenen Zellen aufgebaut wurde, kommt es zu keiner Abstoßungsreaktion; das Immunsystem muss nicht medikamentös unterdrückt werden.

Tatsächlich ist dieses Szenario schon seit einiger Zeit Realität – zumindest, wenn es darum geht, Knochendefekte zu heilen. Doch die Wissenschaftler sind zuversichtlich, dass sie in wenigen Jahren in der Lage sein werden, mit Hilfe der 3D-Technik beispielsweise Frauen nach einer Brustkrebs-OP das Brustgewebe wieder aufbauen zu können oder gleich ganze Organe zu produzieren.

Im kommenden Wintersemester geht ein neuer, internationaler Masterstudiengang an den Start, in dessen Mittelpunkt exakt dieses Forschungsgebiet steht: BIOFAB oder ausgeschrieben Biofabrication Training for Future Manufacturing. Beteiligt an diesem weltweit ersten Angebot sind:

• Queensland University of Technology (Australien)
• University of Woollongong (Australien)
• University Medical Center Utrecht (Niederlande)
• Julius-Maximilians-Universität Würzburg (Deutschland)

Finanziell unterstützt wird der Studiengang von der Europäischen Union und der Regierung von Australien.

„Die Universität Würzburg verfügt seit einiger Zeit über eine hervorragende Expertise im Bereich des 3D-Drucks menschlicher Gewebe und im Tissue Engineering“, sagt Professor Jürgen Groll. Groll leitet seit August 2010 den Würzburger Lehrstuhl für Funktionswerkstoffe in der Medizin und der Zahnheilkunde. Eines seiner Spezialgebiete ist es, aus biokompatiblen Polymeren feinste Fäden zu produzieren und damit Netze zu spinnen, die als Implantate Verwendung finden. Mit einer bislang in Europa einzigartigen Technik, dem sogenannten Melt Electrospinning Writing, kann Groll in einer Art Tintenstrahldrucker eine Polymerschmelze durch eine Düse auf einem Träger verteilen und dabei jede gewünschte Struktur erzeugen.

Professor Paul Dalton, der das Programm maßgeblich organisiert, ist einer der führenden Pioniere auf dem Gebiet des Melt Electrospinning Writings. In seinem Labor am Institute of Health and Biomedical Innovation der Queensland University of Technology hat er diese Technik entwickelt und vorangetrieben. Er wird den neuen Masterstudiengang auch für die Universität Würzburg mitbetreuen.

Der neue Masterstudiengang

Jeweils zehn Studierende werden die vier beteiligten Universitäten in das Masterprogramm aufnehmen. Etwa die Hälfte des Studiums werden sie in Australien und in Europa absolvieren. Am Ende erhalten sie einen internationalen Master sowohl in Australien wie in Europa.

„Biofabrikation ist ein Forschungsgebiet, das viele Disziplinen einschließt“, sagt Paul Dalton. Wer auf diesem Gebiet arbeiten möchte, sollte sich unter anderem mit Chemie, Physik, Biologie, Medizin, Robotik und Informatik auskennen. Dementsprechend können sich Absolventen aus diesen Fächern um einen Studienplatz in dem neuen Studiengang bewerben. Sie erwartet ein Studium, das stark forschungsorientiert ist mit einem hohen Anteil an Laborarbeit. In den vier Semestern werden sie in Europa und Australien in den besten Labors im Bereich der Biofabrikation forschen, mit den führenden Experten zusammen arbeiten und dabei internationale Kontakte knüpfen.

„Die Biofabrikation braucht Forscher mit einem breit gefächerten Wissen und bietet eine Karriereoption für generell Wissenschaftsinteressierte. Die Absolventen dieses Studiengangs werden international gesuchte Spezialisten sein“, verspricht Dalton. Dank ihrer Ausbildung werden sie in der Lage sein, „diese aufregende Revolution in der Medizin anzuführen – eine Revolution, die für eine immer älter werdende Gesellschaft von zunehmender Bedeutung sein wird.“

Kontakt

Prof. Dr. Jürgen Groll, T: +49 (0) 931 - 201 73610; office@fmz.uni-wuerzburg.de
Prof. Dr. Paul Dalton, daltonlab@gmail.com

Weitere Informationen:

http://www.biofabdegree.net

Gunnar Bartsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE