Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Menschliche Proteinfabriken in 3D - Einblicke ins Innere menschlicher Zellen auf Nanoebene

27.08.2010
Wer in der Zelle für die Bildung von Proteinen (Eiweißen) zuständig ist, ist dank der zellbiologischen Forschung bereits bekannt. Aber wie diese Proteinfabriken (Ribosomen) innerhalb der Zelle organisiert sind, ist bisher nicht umfassend erforscht.

Kürzlich ist es Wissenschaftlern am Max-Planck-Institut für Biochemie (MPIB) in Martinsried bei München gelungen, das Innenleben einer intakten menschlichen Zelle mittel Kryo-Elektronentomographie dreidimensional abzubilden. So konnten sie zeigen, wo sich die Ribosomen in der Zelle befinden und wie sie angeordnet sind. In der Vergangenheit war das nur bei Bakterienzellen möglich. Die Ergebnisse wurden jetzt in Molecular Cell veröffentlicht.

Menschliche Zellen sind sehr komplexe Gebilde mit vielen verschiedenen Bestandteilen. Ein sehr wichtiger zellulärer Bestandteil sind die Ribosomen: Sie sind als Proteinfabriken der Zelle für die Herstellung von Proteinen (Proteinbiosynthese) zuständig. Den Bauplan dafür liefert unsere Erbinformation, die DNA.

Da die Ribosomen für diesen Prozess so bedeutsam sind, waren sie schon oft Gegenstand der Strukturforschung. Bisher konnten die Wissenschaftler lediglich einzelne, isolierte Ribosomen betrachten. Ribosomen treten in der lebenden Zelle jedoch meist wie an einer Perlschnur aufgereiht in sogenannten Polyribosomen auf. Eine isolierte Betrachtung genügt aber nicht, um vollständig zu verstehen, wie die Proteinproduktion innerhalb der Zelle abläuft und wie sie in die komplexen zellulären Strukturen und Prozesse eingebunden ist. Daher ist es notwendig, die Ribosomen in ihrer „natürlichen Umgebung“, dem Zellinneren, abzubilden und zu untersuchen. Möglich macht dies die Kryo-Elektronentomographie.

Mit dieser Technik, die maßgeblich in der Abteilung Molekulare Strukturbiologie unter der Leitung von Wolfgang Baumeister entwickelt wurde, können dreidimensionale zelluläre Strukturen abgebildet und betrachtet werden. Die Zelle wird quasi schockgefroren, sodass ihre räumliche Struktur erhalten bleibt und sie in ihren Eigenschaften nicht verändert wird. Dann nehmen die Forscher mit dem Elektronenmikroskop aus verschiedenen Blickwinkeln zweidimensionale Bilder der Zelle auf, aus denen sie schließlich ein dreidimensionales Bild rekonstruieren. Mit Hilfe dieser Methode konnten die MPIB-Wissenschaftler jetzt zum ersten Mal eine dreidimensionale Abbildung einer intakten menschlichen Zelle erzeugen. Das ist die Fortsetzung früherer Arbeiten, in denen dem Team um Wolfgang Baumeister und F.-Ulrich Hartl bereits die räumliche Analyse von Polyribosomen des Bakteriums E. coli (Brandt et al., Cell 2009) und von inaktivierten Ribosomen in einer ganzen E. coli Zelle (Ortiz et al., JCB 2010) gelungen ist.

Die Forscher fanden jetzt heraus, wie die Ribosomen innerhalb der menschlichen Zelle positioniert sind: Ihre Anordnung ist keinesfalls zufällig, sondern sorgt dafür, dass neu entstandene, noch ungefaltete Proteine großen Abstand voneinander einhalten. „Wir konnten eine ähnliche Positionierung schon bei bakteriellen Zellen beobachten, was darauf schließen lässt, dass die Ribosomen bei allen Lebewesen auf nahezu gleiche Weise angeordnet sind“, erklärt Florian Brandt, Wissenschaftler am MPIB. „Diese räumliche Organisation der Ribosomen könnte darauf ausgerichtet sein, ein Verklumpen und eine daraus resultierende Fehlfaltung neu entstandener Proteine zu verhindern.“

Die Arbeit der MPIB-Wissenschaftler stellt einen weiteren, wichtigen Schritt für die Zellbiologie dar, denn sie hilft dabei, die Verteilung der zellulären Bestandteile und damit die räumliche Organisation der gesamten Zelle besser zu verstehen. „Auch könnte in Zukunft interessant sein“, so Brandt, „wie sich diese Organisation zum Beispiel in alternden und kranken Zellen ändert und welchen Einfluss das auf die Gesamteffizienz der Proteinproduktion und –faltung haben könnte." [UD]

Originalveröffentlichung:
Florian Brandt, Lars-Anders Carlson, F.-Ulrich Hartl, Wolfgang Baumeister and Kay Grünewald:
The three-dimensional organization of polyribosomes in intact human cells. Molecular Cell,

August 27, 2010.

Kontakt:
Prof. Dr. Wolfgang Baumeister
Molekulare Strukturbiologie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-mail: baumeist@biochem.mpg.de
Dr. Kay Grünewald
The Division of Structural Biology
University of Oxford
The Henry Wellcome Building for Genomic Medicine
Roosevelt Drive
Oxford, OX3 7BN
United Kingdom
E-mail: kay@strubi.ox.ac.uk
Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. ++49/89-8578-2824
E-mail: konschak@biochem.mpg.de

Anja Konschak | idw
Weitere Informationen:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/news/index.html
http://www.biochem.mpg.de/baumeister/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie