Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Mensch und Maus gemeinsam haben

29.10.2008
Jenaer Tierphysiologen beweisen die Validität von Mäusen als Versuchstiere für Erkrankungen des Sehsystems

Ist bei einem Erwachsenen, etwa durch eine Linsentrübung, das Sehvermögen eingeschränkt, kann sich die Sehfunktion, beispielsweise nach einer Katarakt-Operation, wieder stabilisieren und das Sehvermögen erneut einstellen. Anders bei einem Kind: hier kann eine getrübte Augenlinse zu permanenter Blindheit führen.

"Die kortikale Plastizität in der Sehrinde, wie sie bei Kindern vorhanden ist, bildet sich im Laufe der Jahre zurück", erklärt Prof. Dr. Siegrid Löwel von der Friedrich-Schiller-Universität Jena. Kortikale Plastizität bezeichnet die Eigenschaft der Synapsen und Nervenzellen in der Großhirnrinde, sich abhängig von deren Verwendung in ihren Eigenschaften zu verändern. "Dringen aufgrund einer Linsentrübung bei Kindern keine Sehimpulse ins Gehirn, trennen sich die Fasern zwischen Auge und Gehirn endgültig, während sich bei einem Erwachsenen der Zustand wieder stabilisieren kann", weiß die Jenaer Neurophysiologin.

Um die kortikale Plastizität oder Erkrankungen des Sehsystems zu erforschen, werden heutzutage oft Mäuse als Versuchstiere genutzt. In den letzten Jahren hatten Wissenschaftler mehrfach beschrieben, dass die kortikale Plastizität bei Mäusen - im Gegensatz zum Menschen - das ganze Leben über vorhanden ist. "Diese ungleiche Funktionsweise der Organismen stellte jedoch die Validität der Mäuse als Versuchsmodelle für die Erforschung von Erkrankungen des Sehsystems sehr in Frage", gibt Prof. Siegrid Löwel zu bedenken. Gemeinsam mit ihrem Kollegen Dr. Konrad Lehmann konnte sie die Annahme widerlegen und beweisen, dass die Nervenzellen der Mäuse nur bis zu ihrem 110. Lebenstag plastisch sind. Ein Ergebnis, das im wissenschaftlichen Online-Portal PLoSONE veröffentlicht wurde.

"Die bisherige, irrtümliche Annahme stützte sich auf wissenschaftliche Versuche, die mit höchstens drei Monate alten Mäusen unternommen wurden", sagt Prof. Siegrid Löwel. Gemeinsam mit ihrem Team untersuchte sie Mäuse im Alter von vier Wochen sowie drei, vier und acht Monaten. Um die Linsentrübung zu imitieren, wurde den Tieren ein Auge verschlossen. "Mit Hilfe einer minimal-invasiven optischen Methode (optical imaging of intrinsic signals) haben wir die Aktivitäten im Gehirn sichtbar gemacht", erklärt Prof. Siegrid Löwel die relativ neue Methode des optischen Ableitens. Dabei wird das Gehirn der Maus mit dunkelrotem Licht bestrahlt und durch eine Kamera beobachtet. Erhöhte neuronale Aktivität führt zu einer erhöhten Konzentration von Desoxyhämoglobin, das die rote Strahlung stärker absorbiert. Aktive Gehirnareale erscheinen somit dunkler als inaktive Bereiche. "Dank einer räumlichen Auflösung von 0,05 Millimeter, das ist eine etwa 20fach bessere Auflösung als ein Kernspintomograph liefert, sind die Vorgänge im Gehirn mit der Kamera sehr genau zu beobachten."

Bei einem parallel mit den gleichen Mäusen durchgeführten Verhaltenstest wurde die Sehschärfe mit Hilfe eines optomotorischen Apparats gemessen. In einer Arena-ähnlichen Box wurden senkrechte Streifen auf die Innenwände projiziert und entweder nach rechts oder nach links bewegt. Da Mäuse den Streifen mit Kopfbewegungen folgen, war die beobachtbare Folgebewegung der Mäuse ein eindeutiges Indiz für deren Sehvermögen.

Die Ergebnisse bescheinigten, dass sich Mäuse in der neuronalen Plastizität ihrer Sehrinde nicht vom Menschen und auch nicht von herkömmlichen Versuchstieren der Hirnforschung wie Affen oder Katzen unterscheiden. "Der Befund ist eine essentielle Vorbedingung", so Löwel, "um Mäuse als Modellorganismus bei der Erforschung von Erkrankungen des Sehsystems oder neurologischen Erkrankungen beim Menschen zu nutzen."

Originalpublikation:
Lehmann K. und Löwel, S. (2008) Age-dependent ocular dominance plasticity in adult mice, PLoS ONE/3(9): e3120.
Kontakt:
Prof. Dr. Siegrid Löwel
Institut für Allgemeine Zoologie und Tierphysiologie der Friedrich-Schiller-Universität Jena
Erbertstraße 1, 07743 Jena
Tel.: 03641 / 949131
E-Mail: siegrid.loewel[at]uni-jena.de

Katrin Czerwinka | idw
Weitere Informationen:
http://dx.plos.org/10.1371/journal.pone.0003120
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

„Molekularer Schraubstock“ ermöglicht neue chemische Reaktionen

23.02.2018 | Biowissenschaften Chemie

Internationale Forschungskooperation will Altersbedingte Makuladegeneration überwinden

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics