Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meilenstein bei der chemischen Untersuchung superschwerer Elemente erreicht

19.09.2014

Erste Verbindung zwischen einem superschweren Element und Kohlenstoff hergestellt / Effekt der Relativitätstheorie auf die Chemie kann nun genauer untersucht werden

Einem internationalen Forscherteam unter der Leitung von Gruppen aus Mainz und Darmstadt ist am japanischen RIKEN Nishina Center zum ersten Mal die Synthese einer chemischen Verbindung zwischen einem superschweren Element und Kohlenstoff gelungen. Dazu wurde Seaborgium (Element 106) künstlich hergestellt und mit Kohlenstoffmonoxid zusammengebracht.


Grafische Darstellung eines Seaborgiumhexacarbonyl-Moleküls auf den mit Siliziumdioxid bedeckten Detektoren der COMPACT-Detektorapparatur

Abb.: Alexander Yakushev (GSI) / Christoph E. Düllmann (JGU)

Achtzehn Seaborgium-Atome reagierten mit Kohlenstoffmonoxid zu Seaborgiumhexacarbonyl, einer Verbindung, in der sechs Kohlenstoffmonoxid-Moleküle an jeweils ein Seaborgium-Atom binden. Die Wissenschaftler untersuchten die Gasphaseneigenschaften und das Adsorptionsverhalten auf einer Siliziumdioxidoberfläche und verglichen die Ergebnisse mit denjenigen der Hexacarbonylkomplexe von Molybdän und Wolfram, die in derselben Gruppe des Periodensystems stehen und daher ähnliche chemische Eigenschaften erwarten lassen.

Die Arbeiten haben neue Perspektiven eröffnet, um die chemischen Eigenschaften der Elemente am Ende des Periodensystems wesentlich detaillierter als bisher zu untersuchen und damit den Einfluss der Relativitätstheorie zu erforschen, der bei den schweren Elementen am stärksten ausgeprägt ist. Die neuen Ergebnisse wurden in der Fachzeitschrift Science veröffentlicht.

Chemieexperimente mit superschweren Elementen – mit Ordnungszahlen jenseits von 104 – stellen eine große Herausforderung dar. Zunächst muss das zu untersuchende Element künstlich an einem Teilchenbeschleuniger hergestellt werden. Die Produktionsraten liegen bei höchstens einigen Atomen pro Tag, bei den schwersten Elementen sogar noch darunter. Hinzukommt, dass die Atome instabil sind: Bei der aktuellen Arbeit betrug die Lebensdauer nur etwa zehn Sekunden.

Trotz des großen Aufwands ist die Wissenschaft sehr an der Untersuchung der superschweren Elemente interessiert, weil sie einen Test des Einflusses der Einsteinschen Relativitätstheorie auf die Chemie ermöglicht. Die vielen positiv geladenen Protonen im Atomkern der „Superheavies“ beschleunigen die Elektronen in der Atomhülle auf hohe Geschwindigkeiten – bis auf etwa 80 Prozent der Lichtgeschwindigkeit.

Gemäß der Relativitätstheorie werden die Elektronen dadurch schwerer, als wenn sie in Ruhe wären, was sich auf ihren Aufenthaltsort in der Atomhülle auswirkt und folglich auf die chemischen Eigenschaften. Dies wird im Vergleich mit homologen Elementen untersucht, die eine ähnliche Struktur in ihrer Atomhülle besitzen und in derselben Gruppe des Periodensystems stehen. Solche Studien eröffnen einen Zugang zu den fundamentalen Pfeilern des Periodensystems der Elemente, dem grundlegenden Ordnungsschema der Elemente für Chemiker in aller Welt.

Vor diesem Hintergrund wurde bereits seit einigen Jahren nach neuen Systemen gesucht, in denen relativistische Effekte klar zum Ausdruck kommen. Vorbereitend für die aktuellen Experimente entwickelten die Superschwere-Elemente-Chemie-Arbeitsgruppen am Institut für Kernchemie der Johannes Gutenberg-Universität Mainz (JGU), des Helmholtz-Instituts Mainz (HIM) und des GSI Helmholtzzentrums für Schwerionenforschung (GSI) in Darmstadt in Zusammenarbeit mit Schweizer Kollegen vom Paul Scherrer Institut, Villigen, und der Universität Bern eine neuartige Experimentmethode. Erste Testexperimente am Forschungsreaktor TRIGA Mainz waren insbesondere mit kurzlebigen Molybdän-Atomen erfolgreich.

Die Methode wurde an der Universität Bern und in Beschleunigerexperimenten an der GSI weiterentwickelt. Dr. Alexander Yakushev von der GSI-Gruppe erläutert: „Eine große Herausforderung in solchen Experimenten ist der intensive Ionenstrahl des Beschleunigers, der auch moderat stabile chemische Verbindungen zerstört. Um dies zu verhindern, wurden Wolfram-Atome – die schwereren Brüder des Molybdäns – erst im gasgefüllten TASCA-Separator an der GSI vom Strahl abgetrennt.

Die Chemieexperimente wurden dann hinter TASCA durchgeführt, unter idealen Bedingungen für die Untersuchungen der neuen Verbindungen." Das Augenmerk lag auf der Bildung von Hexacarbonylkomplexen. Theoretische Arbeiten, die in den 1990er-Jahren begannen, sagten vorher, dass Seaborgium solche Komplexe mit relativ hoher Stabilität bilden sollte. An die sechs Kohlenstoffmonoxid-Moleküle ist das Seaborgium durch Metall-Kohlenstoffbindungen, wie sie auch für die organometallischen Verbindungen typisch sind, gebunden. Viele solche Verbindungen weisen die gewünschte Bindungssituation auf, von der die Schwerelementechemiker lange geträumt hatten.

Die Schwerelementegruppe am RIKEN Nishina Center (RNC) in Japan optimierte die Produktion des Seaborgiums in der Kernfusion eines Neon-Ionenstrahls (Element 10) mit einem Curium-Target (Element 96) und die Abtrennung des Seaborgiums in ihrem gasgefüllten Separator GARIS. Dr. Hiromitsu Haba, der Leiter des Teams bei RIKEN, erläutert: „In der konventionellen Herangehensweise zur Produktion superschwerer Elemente wird der zweifelsfreie Nachweis einzelner Atome der superschweren Elemente wie des Seaborgiums oft durch viele unerwünschte Reaktionsprodukte unmöglich gemacht. Die Verwendung von GARIS erlaubte uns schließlich, Signale von Seaborgium und damit seine Produktionsrate und die Zerfallseigenschaften zu messen. GARIS eröffnete damit die Möglichkeit, neuartige chemische Studien mit Seaborgium in Angriff zu nehmen."

Im Jahr 2013 untersuchten die beiden Teams zusammen mit Kollegen aus der Schweiz, aus Japan, den USA und China in Experimenten am RNC, ob sie Verbindungen wie Seaborgiumhexacarbonyl synthetisieren könnten. Nach zwei Wochen Experimentzeit rund um die Uhr, in denen die deutsche Chemieapparatur an den japanischen Separator gekoppelt wurde, hatte das Team achtzehn Seaborgium-Atome detektiert, die als flüchtige Carbonylkomplexe im Gasstrom transportiert werden konnten. Die Gasphaseneigenschaften sowie das Adsorptionsverhalten des Komplexes auf einer Siliziumdioxidoberfläche wurden untersucht und waren ähnlich wie diejenigen der Hexacarbonyle von Seaborgiums leichteren Homologen Molybdän und Wolfram. Dies sind sehr charakteristische Verbindungen der Elemente in der sechsten Gruppe des Periodensystems. Die gemessenen Eigenschaften sind im Einklang mit theoretischen Rechnungen, in denen die Effekte der Relativität mit berücksichtigt sind.

Dr. Hideto En'yo, Direktor des RNC, führt aus: „Der Durchbruch, der in diesem Experiment erzielt wurde, wäre ohne die enge Zusammenarbeit der vierzehn Forschungszentren aus aller Welt unmöglich gewesen." HIM-Direktor Prof. Dr. Frank Maas sagt: „Das Experiment stellt einen Meilenstein der chemischen Untersuchungen superschwerer Elemente dar. Die Forscher zeigten, dass viele neue Verbindungen dieser Elemente in Reichweite der neuartigen Experimenttechniken sind. Die Perspektiven, die sich für die Untersuchung der chemischen Bindung, nicht nur in den superschweren Elementen, eröffnen, sind faszinierend."

Nach diesem ersten erfolgreichen Schritt auf dem Weg zu detaillierteren Untersuchungen der superschweren Elemente schmiedet das Team bereits Pläne für weitere Studien anderer neuer Verbindungen, auch noch schwererer Elemente als Seaborgium.

Veröffentlichung:
Julia Even et al.
Synthesis and detection of a seaborgium carbonyl complex
Science, 18. September 2014
DOI: 10.1126/science.1255720

Fotos:
http://www.uni-mainz.de/bilder_presse/09_kernchemie_seaborgium_01.jpg
Dr. Julia Even vom Helmholtz-Institut Mainz und Dr. Hiromitsu Haba von RIKEN, Wako, Japan, bereiten den mit Gas gefüllten GARIS-Separator (oben rechts) vor für die Ankopplung der Kammer, die die Schnittstelle zur Chemieapparatur bildet (unten Mitte).
Foto: Matthias Schädel

http://www.uni-mainz.de/bilder_presse/09_kernchemie_seaborgium_02.jpg
Grafische Darstellung eines Seaborgiumhexacarbonyl-Moleküls auf den mit Siliziumdioxid bedeckten Detektoren der COMPACT-Detektorapparatur
Abb.: Alexander Yakushev (GSI) / Christoph E. Düllmann (JGU)

Weitere Informationen:
Univ.-Prof. Dr. Christoph Düllmann
Institut für Kernchemie
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-25852
Fax +49 6131 39-20811
E-Mail: duellmann@uni-mainz.de
http://www.kernchemie.uni-mainz.de
oder:
Univ.-Prof. Dr. Christoph Düllmann
GSI Helmholtzzentrum für Schwerionenforschung
Planckstr. 1
D 64291 Darmstadt
Tel. +49 6159 71-2462
Fax +49 6159 71-3463
http://www.gsi.de/

Weitere Informationen:

http://www.sciencemag.org/content/345/6203/1491 (Abstract) ;
http://www.superheavies.de/deutsch/willkommen.htm

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops