Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meilenstein bei der chemischen Untersuchung superschwerer Elemente erreicht

19.09.2014

Erste Verbindung zwischen einem superschweren Element und Kohlenstoff hergestellt / Effekt der Relativitätstheorie auf die Chemie kann nun genauer untersucht werden

Einem internationalen Forscherteam unter der Leitung von Gruppen aus Mainz und Darmstadt ist am japanischen RIKEN Nishina Center zum ersten Mal die Synthese einer chemischen Verbindung zwischen einem superschweren Element und Kohlenstoff gelungen. Dazu wurde Seaborgium (Element 106) künstlich hergestellt und mit Kohlenstoffmonoxid zusammengebracht.


Grafische Darstellung eines Seaborgiumhexacarbonyl-Moleküls auf den mit Siliziumdioxid bedeckten Detektoren der COMPACT-Detektorapparatur

Abb.: Alexander Yakushev (GSI) / Christoph E. Düllmann (JGU)

Achtzehn Seaborgium-Atome reagierten mit Kohlenstoffmonoxid zu Seaborgiumhexacarbonyl, einer Verbindung, in der sechs Kohlenstoffmonoxid-Moleküle an jeweils ein Seaborgium-Atom binden. Die Wissenschaftler untersuchten die Gasphaseneigenschaften und das Adsorptionsverhalten auf einer Siliziumdioxidoberfläche und verglichen die Ergebnisse mit denjenigen der Hexacarbonylkomplexe von Molybdän und Wolfram, die in derselben Gruppe des Periodensystems stehen und daher ähnliche chemische Eigenschaften erwarten lassen.

Die Arbeiten haben neue Perspektiven eröffnet, um die chemischen Eigenschaften der Elemente am Ende des Periodensystems wesentlich detaillierter als bisher zu untersuchen und damit den Einfluss der Relativitätstheorie zu erforschen, der bei den schweren Elementen am stärksten ausgeprägt ist. Die neuen Ergebnisse wurden in der Fachzeitschrift Science veröffentlicht.

Chemieexperimente mit superschweren Elementen – mit Ordnungszahlen jenseits von 104 – stellen eine große Herausforderung dar. Zunächst muss das zu untersuchende Element künstlich an einem Teilchenbeschleuniger hergestellt werden. Die Produktionsraten liegen bei höchstens einigen Atomen pro Tag, bei den schwersten Elementen sogar noch darunter. Hinzukommt, dass die Atome instabil sind: Bei der aktuellen Arbeit betrug die Lebensdauer nur etwa zehn Sekunden.

Trotz des großen Aufwands ist die Wissenschaft sehr an der Untersuchung der superschweren Elemente interessiert, weil sie einen Test des Einflusses der Einsteinschen Relativitätstheorie auf die Chemie ermöglicht. Die vielen positiv geladenen Protonen im Atomkern der „Superheavies“ beschleunigen die Elektronen in der Atomhülle auf hohe Geschwindigkeiten – bis auf etwa 80 Prozent der Lichtgeschwindigkeit.

Gemäß der Relativitätstheorie werden die Elektronen dadurch schwerer, als wenn sie in Ruhe wären, was sich auf ihren Aufenthaltsort in der Atomhülle auswirkt und folglich auf die chemischen Eigenschaften. Dies wird im Vergleich mit homologen Elementen untersucht, die eine ähnliche Struktur in ihrer Atomhülle besitzen und in derselben Gruppe des Periodensystems stehen. Solche Studien eröffnen einen Zugang zu den fundamentalen Pfeilern des Periodensystems der Elemente, dem grundlegenden Ordnungsschema der Elemente für Chemiker in aller Welt.

Vor diesem Hintergrund wurde bereits seit einigen Jahren nach neuen Systemen gesucht, in denen relativistische Effekte klar zum Ausdruck kommen. Vorbereitend für die aktuellen Experimente entwickelten die Superschwere-Elemente-Chemie-Arbeitsgruppen am Institut für Kernchemie der Johannes Gutenberg-Universität Mainz (JGU), des Helmholtz-Instituts Mainz (HIM) und des GSI Helmholtzzentrums für Schwerionenforschung (GSI) in Darmstadt in Zusammenarbeit mit Schweizer Kollegen vom Paul Scherrer Institut, Villigen, und der Universität Bern eine neuartige Experimentmethode. Erste Testexperimente am Forschungsreaktor TRIGA Mainz waren insbesondere mit kurzlebigen Molybdän-Atomen erfolgreich.

Die Methode wurde an der Universität Bern und in Beschleunigerexperimenten an der GSI weiterentwickelt. Dr. Alexander Yakushev von der GSI-Gruppe erläutert: „Eine große Herausforderung in solchen Experimenten ist der intensive Ionenstrahl des Beschleunigers, der auch moderat stabile chemische Verbindungen zerstört. Um dies zu verhindern, wurden Wolfram-Atome – die schwereren Brüder des Molybdäns – erst im gasgefüllten TASCA-Separator an der GSI vom Strahl abgetrennt.

Die Chemieexperimente wurden dann hinter TASCA durchgeführt, unter idealen Bedingungen für die Untersuchungen der neuen Verbindungen." Das Augenmerk lag auf der Bildung von Hexacarbonylkomplexen. Theoretische Arbeiten, die in den 1990er-Jahren begannen, sagten vorher, dass Seaborgium solche Komplexe mit relativ hoher Stabilität bilden sollte. An die sechs Kohlenstoffmonoxid-Moleküle ist das Seaborgium durch Metall-Kohlenstoffbindungen, wie sie auch für die organometallischen Verbindungen typisch sind, gebunden. Viele solche Verbindungen weisen die gewünschte Bindungssituation auf, von der die Schwerelementechemiker lange geträumt hatten.

Die Schwerelementegruppe am RIKEN Nishina Center (RNC) in Japan optimierte die Produktion des Seaborgiums in der Kernfusion eines Neon-Ionenstrahls (Element 10) mit einem Curium-Target (Element 96) und die Abtrennung des Seaborgiums in ihrem gasgefüllten Separator GARIS. Dr. Hiromitsu Haba, der Leiter des Teams bei RIKEN, erläutert: „In der konventionellen Herangehensweise zur Produktion superschwerer Elemente wird der zweifelsfreie Nachweis einzelner Atome der superschweren Elemente wie des Seaborgiums oft durch viele unerwünschte Reaktionsprodukte unmöglich gemacht. Die Verwendung von GARIS erlaubte uns schließlich, Signale von Seaborgium und damit seine Produktionsrate und die Zerfallseigenschaften zu messen. GARIS eröffnete damit die Möglichkeit, neuartige chemische Studien mit Seaborgium in Angriff zu nehmen."

Im Jahr 2013 untersuchten die beiden Teams zusammen mit Kollegen aus der Schweiz, aus Japan, den USA und China in Experimenten am RNC, ob sie Verbindungen wie Seaborgiumhexacarbonyl synthetisieren könnten. Nach zwei Wochen Experimentzeit rund um die Uhr, in denen die deutsche Chemieapparatur an den japanischen Separator gekoppelt wurde, hatte das Team achtzehn Seaborgium-Atome detektiert, die als flüchtige Carbonylkomplexe im Gasstrom transportiert werden konnten. Die Gasphaseneigenschaften sowie das Adsorptionsverhalten des Komplexes auf einer Siliziumdioxidoberfläche wurden untersucht und waren ähnlich wie diejenigen der Hexacarbonyle von Seaborgiums leichteren Homologen Molybdän und Wolfram. Dies sind sehr charakteristische Verbindungen der Elemente in der sechsten Gruppe des Periodensystems. Die gemessenen Eigenschaften sind im Einklang mit theoretischen Rechnungen, in denen die Effekte der Relativität mit berücksichtigt sind.

Dr. Hideto En'yo, Direktor des RNC, führt aus: „Der Durchbruch, der in diesem Experiment erzielt wurde, wäre ohne die enge Zusammenarbeit der vierzehn Forschungszentren aus aller Welt unmöglich gewesen." HIM-Direktor Prof. Dr. Frank Maas sagt: „Das Experiment stellt einen Meilenstein der chemischen Untersuchungen superschwerer Elemente dar. Die Forscher zeigten, dass viele neue Verbindungen dieser Elemente in Reichweite der neuartigen Experimenttechniken sind. Die Perspektiven, die sich für die Untersuchung der chemischen Bindung, nicht nur in den superschweren Elementen, eröffnen, sind faszinierend."

Nach diesem ersten erfolgreichen Schritt auf dem Weg zu detaillierteren Untersuchungen der superschweren Elemente schmiedet das Team bereits Pläne für weitere Studien anderer neuer Verbindungen, auch noch schwererer Elemente als Seaborgium.

Veröffentlichung:
Julia Even et al.
Synthesis and detection of a seaborgium carbonyl complex
Science, 18. September 2014
DOI: 10.1126/science.1255720

Fotos:
http://www.uni-mainz.de/bilder_presse/09_kernchemie_seaborgium_01.jpg
Dr. Julia Even vom Helmholtz-Institut Mainz und Dr. Hiromitsu Haba von RIKEN, Wako, Japan, bereiten den mit Gas gefüllten GARIS-Separator (oben rechts) vor für die Ankopplung der Kammer, die die Schnittstelle zur Chemieapparatur bildet (unten Mitte).
Foto: Matthias Schädel

http://www.uni-mainz.de/bilder_presse/09_kernchemie_seaborgium_02.jpg
Grafische Darstellung eines Seaborgiumhexacarbonyl-Moleküls auf den mit Siliziumdioxid bedeckten Detektoren der COMPACT-Detektorapparatur
Abb.: Alexander Yakushev (GSI) / Christoph E. Düllmann (JGU)

Weitere Informationen:
Univ.-Prof. Dr. Christoph Düllmann
Institut für Kernchemie
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-25852
Fax +49 6131 39-20811
E-Mail: duellmann@uni-mainz.de
http://www.kernchemie.uni-mainz.de
oder:
Univ.-Prof. Dr. Christoph Düllmann
GSI Helmholtzzentrum für Schwerionenforschung
Planckstr. 1
D 64291 Darmstadt
Tel. +49 6159 71-2462
Fax +49 6159 71-3463
http://www.gsi.de/

Weitere Informationen:

http://www.sciencemag.org/content/345/6203/1491 (Abstract) ;
http://www.superheavies.de/deutsch/willkommen.htm

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie