Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehrere Signalwege steuern die Produktion der Blütenpollen

21.01.2011
Bei der Pollenbildung setzen Samenpflanzen auf Überfluss

Pflanzen dürfen die Bildung von Blütenpollen nicht dem Zufall überlassen. Die Modelpflanze Ackerschmalwand benutzt dazu drei zusammenlaufende Signalwege, deren Wirkung zum Teil überlappt. Am höchsten ist die Ausbeute, wenn alle drei Prozesse anspringen. Allerdings reichen auch zwei, um eine annehmbare Menge an Blütenpollen zu bilden.


Die Abbildung zeigt einen aufgehellten Blütenstand einer transgenen Ackerschmalwand (Arabidopsis thaliana). In den noch ungeöffneten Blütenknospen sind die Antheren blau gefärbt als Zeichen der Mikro-RNA157d Expression. © Shuping Xing / MPI für Pflanzenzüchtungsforschung

Peter Huijser und seine Kollegen vom Max-Planck-Institut für Pflanzenzüchtungsforschung in Köln eröffnen durch eine neue Studie einen faszinierenden Blick auf das reiche Sortiment an Proteinen, mit denen Samenpflanzen die Ausgestaltung der Staubblätter und die Bildung der Blütenpollen vorantreiben. Für Pflanzen gilt eben auch: Wer sich nicht fortpflanzt, geht unter. (The Plant Cell, 21. Dezember 2010)

Blüten sind kein nutzloser Luxus für die Pflanzen, sie enthalten schließlich die männlichen und weiblichen Fortpflanzungsorgane. In den Staubblättern entstehen die männlichen Pollen, im Fruchtknoten der weibliche Eiapparat. Durch die Verschmelzung entsteht ein keimfähiger Embryo, der die Nachkommenschaft garantiert.

Damit die Pflanzen blühen können, ist eine radikale Zäsur während der Entwicklung notwendig. Die Bildung von Blättern wird eingestellt und stattdessen erscheinen nach Geschlechtern getrennte Fortpflanzungsorgane, die Geschlechtszellen mit einfachem Chromosomensatz erzeugen. Für eine optimale Vermehrung müssen gleichzeitig auch die äußeren Einflüsse wie Lichtverhältnisse und Temperatur berücksichtigt werden. Das darf allerdings nicht so weit gehen, dass die Blütenbildung ausgesetzt wird, wenn die Umweltbedingungen nicht optimal sind.

Von den drei Signalwegen, die für die Entstehung der männlichen Fortpflanzungsorgane und Geschlechtszellen genutzt werden, ist einer nicht zu ersetzen. Dieser schon länger bekannte Weg über das SPOROCYTELESS-Gen springt an, sobald das sogenannte AGAMOUS-Protein anzeigt, aus welchen Zellen am Ende der Sprossachse die Staubblätter hervorgehen sollen.

Peter Huijser und seine Kollegen vom Max-Planck-Institut für Pflanzenzüchtungsforschung haben nun gezeigt, dass nur dann funktionstüchtige männliche Fortpflanzungsorgane und Geschlechtszellen entstehen, wenn mindestens einer von zwei weiteren Signalwegen hinzukommt. Zusammen mit dem zentralen und unverzichtbaren Signalweg sorgen sie dafür, dass nicht nur die Pollenbildung im Innern des Staubblatts initiiert wird, sondern auch, dass die richtigen Gewebe und anatomischen Strukturen für die Entwicklung, Reifung und Verbreitung der Pollenkörner entstehen. Ist der zentrale Signalweg mutiert, sind die Blüten unfruchtbar.

Huijser und seine Kollegen haben vor allem Mutationen der beiden anderen Signalwege näher untersucht. Diese führen zu höchst interessanten Unterschieden bei der Fortpflanzungsfähigkeit des frühen und späten Blütenflors. Der eine Weg führt über das sogenannte SPL8-Protein, der andere über mehrere mit SPL8 verwandte Proteine. Letztere unterscheiden sich von SPL8 vor allem dadurch, dass sie durch eine kurze Ribonukleinsäure, die sogenannte Mikro-RNA156, abgeschaltet werden können. Huijser: „Fällt der SPL8-Weg wegen einer Mutation aus, ist die Pflanze weniger fruchtbar. Über den alternativen Signalweg entstehen aber immer noch genügend geschlechtsreife Pollenkörner, um den Fortbestand der Art zu sichern. Allerdings mit einer wichtigen Ausnahme: Die ersten Blüten einer Pflanze mit SPL8-Mutation sind komplett steril. Vermutlich ist der andere Signalweg in der Frühphase des Blühens noch durch eine zu hohe Mikro-RNA156 Konzentration blockiert.

Mit dieser Schlussfolgerung knüpfen die Kölner Wissenschaftler an eine Beobachtung von Detlef Weigel und seinen Kollegen vom MPI für Entwicklungsbiologie in Tübingen an. Weigel hatte gezeigt, dass einer der beiden alternativen Signalwege während des vegetativen Wachstums durch eine hohe Konzentration an Mikro-RNA156 ausgebremst wird. Je älter die Pflanze wird, desto weniger Mikro-RNA156 wird gebildet und desto schwächer wird die Bremswirkung. Sie ist allerdings noch nicht ganz aufgehoben, wenn bereits die ersten Blüten entstehen.

Huijser dazu: „Ihre Fertilität verdanken die ersten Blüten den beiden anderen Signalwegen, also dem SPOROCYTELESS- und SPL8-Weg. Ohne den SPL8-Weg kann die Ackerschmalwand in den ersten Blüten keine reifen Pollenkörner bilden. Erst die späteren Blüten sind fertil, und zwar dann, wenn die Bremswirkung der Mikro-RNA156 vollständig abgeklungen ist und der andere Signalweg angesprungen ist. Das erklärt auch, warum alle drei Signalwege zusammen das beste Ergebnis bei der Produktion der Pollenkörner liefern, zwei aber genügen, um die Fertilität der Pflanze zu sichern."

| Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/1040686/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten