Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehrere Signalwege steuern die Produktion der Blütenpollen

21.01.2011
Bei der Pollenbildung setzen Samenpflanzen auf Überfluss

Pflanzen dürfen die Bildung von Blütenpollen nicht dem Zufall überlassen. Die Modelpflanze Ackerschmalwand benutzt dazu drei zusammenlaufende Signalwege, deren Wirkung zum Teil überlappt. Am höchsten ist die Ausbeute, wenn alle drei Prozesse anspringen. Allerdings reichen auch zwei, um eine annehmbare Menge an Blütenpollen zu bilden.


Die Abbildung zeigt einen aufgehellten Blütenstand einer transgenen Ackerschmalwand (Arabidopsis thaliana). In den noch ungeöffneten Blütenknospen sind die Antheren blau gefärbt als Zeichen der Mikro-RNA157d Expression. © Shuping Xing / MPI für Pflanzenzüchtungsforschung

Peter Huijser und seine Kollegen vom Max-Planck-Institut für Pflanzenzüchtungsforschung in Köln eröffnen durch eine neue Studie einen faszinierenden Blick auf das reiche Sortiment an Proteinen, mit denen Samenpflanzen die Ausgestaltung der Staubblätter und die Bildung der Blütenpollen vorantreiben. Für Pflanzen gilt eben auch: Wer sich nicht fortpflanzt, geht unter. (The Plant Cell, 21. Dezember 2010)

Blüten sind kein nutzloser Luxus für die Pflanzen, sie enthalten schließlich die männlichen und weiblichen Fortpflanzungsorgane. In den Staubblättern entstehen die männlichen Pollen, im Fruchtknoten der weibliche Eiapparat. Durch die Verschmelzung entsteht ein keimfähiger Embryo, der die Nachkommenschaft garantiert.

Damit die Pflanzen blühen können, ist eine radikale Zäsur während der Entwicklung notwendig. Die Bildung von Blättern wird eingestellt und stattdessen erscheinen nach Geschlechtern getrennte Fortpflanzungsorgane, die Geschlechtszellen mit einfachem Chromosomensatz erzeugen. Für eine optimale Vermehrung müssen gleichzeitig auch die äußeren Einflüsse wie Lichtverhältnisse und Temperatur berücksichtigt werden. Das darf allerdings nicht so weit gehen, dass die Blütenbildung ausgesetzt wird, wenn die Umweltbedingungen nicht optimal sind.

Von den drei Signalwegen, die für die Entstehung der männlichen Fortpflanzungsorgane und Geschlechtszellen genutzt werden, ist einer nicht zu ersetzen. Dieser schon länger bekannte Weg über das SPOROCYTELESS-Gen springt an, sobald das sogenannte AGAMOUS-Protein anzeigt, aus welchen Zellen am Ende der Sprossachse die Staubblätter hervorgehen sollen.

Peter Huijser und seine Kollegen vom Max-Planck-Institut für Pflanzenzüchtungsforschung haben nun gezeigt, dass nur dann funktionstüchtige männliche Fortpflanzungsorgane und Geschlechtszellen entstehen, wenn mindestens einer von zwei weiteren Signalwegen hinzukommt. Zusammen mit dem zentralen und unverzichtbaren Signalweg sorgen sie dafür, dass nicht nur die Pollenbildung im Innern des Staubblatts initiiert wird, sondern auch, dass die richtigen Gewebe und anatomischen Strukturen für die Entwicklung, Reifung und Verbreitung der Pollenkörner entstehen. Ist der zentrale Signalweg mutiert, sind die Blüten unfruchtbar.

Huijser und seine Kollegen haben vor allem Mutationen der beiden anderen Signalwege näher untersucht. Diese führen zu höchst interessanten Unterschieden bei der Fortpflanzungsfähigkeit des frühen und späten Blütenflors. Der eine Weg führt über das sogenannte SPL8-Protein, der andere über mehrere mit SPL8 verwandte Proteine. Letztere unterscheiden sich von SPL8 vor allem dadurch, dass sie durch eine kurze Ribonukleinsäure, die sogenannte Mikro-RNA156, abgeschaltet werden können. Huijser: „Fällt der SPL8-Weg wegen einer Mutation aus, ist die Pflanze weniger fruchtbar. Über den alternativen Signalweg entstehen aber immer noch genügend geschlechtsreife Pollenkörner, um den Fortbestand der Art zu sichern. Allerdings mit einer wichtigen Ausnahme: Die ersten Blüten einer Pflanze mit SPL8-Mutation sind komplett steril. Vermutlich ist der andere Signalweg in der Frühphase des Blühens noch durch eine zu hohe Mikro-RNA156 Konzentration blockiert.

Mit dieser Schlussfolgerung knüpfen die Kölner Wissenschaftler an eine Beobachtung von Detlef Weigel und seinen Kollegen vom MPI für Entwicklungsbiologie in Tübingen an. Weigel hatte gezeigt, dass einer der beiden alternativen Signalwege während des vegetativen Wachstums durch eine hohe Konzentration an Mikro-RNA156 ausgebremst wird. Je älter die Pflanze wird, desto weniger Mikro-RNA156 wird gebildet und desto schwächer wird die Bremswirkung. Sie ist allerdings noch nicht ganz aufgehoben, wenn bereits die ersten Blüten entstehen.

Huijser dazu: „Ihre Fertilität verdanken die ersten Blüten den beiden anderen Signalwegen, also dem SPOROCYTELESS- und SPL8-Weg. Ohne den SPL8-Weg kann die Ackerschmalwand in den ersten Blüten keine reifen Pollenkörner bilden. Erst die späteren Blüten sind fertil, und zwar dann, wenn die Bremswirkung der Mikro-RNA156 vollständig abgeklungen ist und der andere Signalweg angesprungen ist. Das erklärt auch, warum alle drei Signalwege zusammen das beste Ergebnis bei der Produktion der Pollenkörner liefern, zwei aber genügen, um die Fertilität der Pflanze zu sichern."

| Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/1040686/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie