Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Widerstandskraft für die Kartoffel

13.10.2015

Tübinger Forscher entschlüsseln Immunantwort der Pflanzen ‒ Ein neu identifizierter Erkennungsrezeptor könnte in Nutzpflanzen übertragen werden und diese vor Krankheitserregern schützen

Auch Pflanzen besitzen ein Immunsystem zur Bekämpfung von Infektionen. Um Krankheitserreger rechtzeitig zu erkennen, binden sie Bestandteile der Krankheitserreger an sogenannte Rezeptorproteine, die sich an der Oberfläche der pflanzlichen Zellen befinden.

Wissenschaftler haben nun ein unter Mikroben besonders weit verbreitetes Erkennungsmuster entdeckt, das eine pflanzliche Immunreaktion auslösen kann: Das Peptidfragment nlp20 ist Bestandteil von Giften aus Bakterien, Pilzen und Oomyceten (Eipilzen).

Ein prominenter Erreger, der diesen nlp20-enthaltenden Virulenzfaktor produziert, ist Phytophthora infestans, Verursacher der Kraut- und Knollenfäule bei der Kartoffel. Diese Pflanzenkrankheit führte um 1845 in Irland zur „Großen Hungersnot“ („Great Famine“) und verursacht auch heute noch schwerwiegende Probleme und Ernteverluste im Kartoffel- und Tomatenanbau.

Isabell Albert, Hannah Böhm, Thorsten Nürnberger und weitere Forscher des Zentrums für  Molekularbiologie der Pflanzen (ZMBP) an der Universität Tübingen haben nun zusammen mit Kooperationspartnern der Universitäten Utrecht, Würzburg und Peking in der Modellpflanze Ackerschmalwand (Arabidopsis thaliana) Gene identifiziert, die zur Erkennung von nlp20 wichtig sind.

Überträgt man diese in Nutzpflanzen wie die Kartoffel, könnte dies deren Anfälligkeit gegenüber Krankheitserregern wie Phytophthora infestans reduzieren. Die Ergebnisse wurden kürzlich im Fachmagazin Nature Plants veröffentlicht. doi:10.1038/nplants.2015.140

Die Wissenschaftler beschreiben, wie der Krankheitserreger erkannt wird, sobald sich das Toxinfragment nlp20 an das Rezeptorprotein RLP23 bindet. Zusammen mit den Corezeptoren SOBIR1 und BAK1 bildet dieses einen Komplex und löst so eine Signalübertragung ins Zellinnere aus, die verschiedene Abwehrreaktionen der Pflanze einleitet.

In ihrer Studie testeten die Wissenschaftler des ZMBP, ob ein Gentransfer des verantwortlichen Rezeptors für Phytophthora anfällige Wirtspflanzen widerstandsfähiger macht. „Wie die Ergebnisse zeigen, reagieren Nutzpflanzen wie Kartoffel und Tomate mit Abwehr, sobald sie diesen Erkennungskomplex in sich tragen und zeigen bei einer Infektion weit weniger Krankheitssymptome als die unveränderten Pflanzen“, sagt Dr. Isabell Albert.

Die außergewöhnlich breite Verteilung des Identifikationsmusters nlp20 bietet somit die Möglichkeit, Nutzpflanzen gegen ein großes Spektrum an Krankheitserregern widerstandsfähiger zu machen.

Kontakt:
Prof. Dr. Thorsten Nürnberger
Universität Tübingen
Zentrum für Molekularbiologie der Pflanzen (ZMBP)
Telefon +49 7071 29-76658
nuernberger[at]uni-tuebingen.de

Antje Karbe | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics