Mehr Transparenz: Optisch transparenter Katalysator aus Kupfernanodrähten für die Wasseroxidation

Kupfer-Nickel-Nanodrähte bietet das Potenzial für effiziente Systeme für die Herstellung „solarer Brennstoffe“. (c) Wiley-VCH<br>

Amerikanische Wissenschaftler stellen in der Zeitschrift Angewandte Chemie jetzt einen neuen Elektrokatalysator für diese Wasseroxidation vor: ein leitfähiges Netz aus Kern-Schale-Nanodrähten, das sich genauso leistungsfähig wie konventionelle Metalloxidfilme auf Indium-Zinn-Oxid (ITO) zeigt, aber um ein Vielfaches transparenter und robuster ist.

Nickel- und Cobaltoxide sind attraktive Anodenmaterialien für die Wasseroxidation, da sie gut verfügbar sind und eine hohe katalytische Aktivität zeigen. Für den Einsatz in Photoelektrosynthesezellen, in denen chemische Umsetzungen angetrieben durch Licht stattfinden, werden die Oxide typischerweise elektrisch auf ITO-Substraten abgeschieden.

ITO wird aufgrund seiner hohen Lichtdurchlässigkeit und seines geringen Flächenwiderstands eingesetzt. Allerdings können ITO-Oberflächen bei den für die Wasseroxidation nötigen hohen Spannungen an Leitfähigkeit einbüßen.

Zudem ist Indium teuer und die Herstellung von ITO-Filmen kostenintensiv. Nachteilig auch, dass die katalytischen Oxid-Schichten die Lichtdurchlässigkeit und damit den Lichteinfang der photovoltaischen Komponenten verringern.

Das Team um Benjamin J. Wiley von der Duke University in Durham hat nun einen neuen Ansatz entwickelt, um diese Probleme zu lösen. Der Trick: Die Wissenschaftler ersetzten die ITO-Elektrode durch ein leitfähiges Netz aus Kupfer-Nanodrähten. Kupfer ist ein häufig vorkommendes Element und damit um Größenordnungen kostengünstiger als Indium.

Zudem lassen sich die Nanodrähte in einem raschen, recht einfachen und damit ebenfalls kostengünstigen Prozess aus einer Flüssigkeit als Film auf einer Glasoberfläche abscheiden. Auf die Nanodrähte schieden die Forscher anschließend Nickel oder Kobalt elektrolytisch ab. Das so hergestellte Netz aus Kern-Schale-Nanodrähten ist bei der photoelektrokatalytischen Wasseroxidation ebenso leistungsfähig wie Metalloxidfilme ähnlicher Zusammensetzung, dabei aber um ein Vielfaches transparenter.

Statt auf Glas kann der Film aus Nanodrähten auch auf eine flexible Folie aus dem Kunststoff Polyethylenterephthalat (PET) aufgetragen werden. Anders als bei den ITO-basierten Elektrokatalysatoren auf einem PET-Träger, deren Leitfähigkeit nach wiederholtem Biegen deutlich leidet, macht dies dem Film aus Nanodrähten nicht viel aus. Die Wissenschaftler zeigen sich optimistisch, dass ihr Ansatz neue Möglichkeiten für das Design effizienterer, mechanisch robuster und dabei kostengünstigerer Licht-sammelnder Systeme für die Herstellung „solarer Brennstoffe“ eröffnen wird.

Angewandte Chemie: Presseinfo 42/2013

Autor: Benjamin J. Wiley, Duke University, Durham (USA), http://people.duke.edu/~bjw24/contact.html

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201306585

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Media Contact

Dr. Renate Hoer GDCh

Weitere Informationen:

http://presse.angewandte.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer