Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Schlagkraft gegen Krebs

09.08.2010
Wie wird das Immunsystem schlagkräftiger gegen Krebs? Forscher vom Max-Delbrück-Centrum (MDC) und der Charité – Universitätsmedizin in Berlin haben in zehnjähriger Entwicklungsarbeit die Rezeptoren bestimmter Immunzellen (T-Zellen), die T-Zell-Rezeptoren, so geschärft, dass sie Krebszellen künftig nicht mehr unerkannt links liegen lassen, sondern gezielt aufspüren. Das ist die Voraussetzung dafür, dass das Immunsystem die Krebszellen zerstören kann. Die Forscher entwickelten eine Maus mit einem ganzen Arsenal dieser T-Zell-Rezeptoren des Menschen (Nature Medicine, doi: 10.1038/nm.2197)*. Ziel ist, diese Rezeptoren für eine gezielte Immuntherapie bei Patienten einzusetzen.

Die T-Zellen des Immunsystems tragen auf ihrer Oberfläche Rezeptoren, mit deren Hilfe sie Bakterien, Viren, Pilze erkennen und dafür sorgen, dass das Immunsystem die fremden Eindringlinge bekämpft und zerstört. Gleichzeitig müssen T-Zellen aber fremde von körpereigenen Proteinen (Eiweißen) unterscheiden, damit das Immunsystem körpereigenes Gewebe toleriert. Kann das Immunsystem diese Unterscheidung nicht mehr treffen, attackiert es körpereigene Strukturen und es entstehen sogenannte Autoimmunerkrankungen, wie zum Beispiel Diabetes Typ 1 oder Multiple Sklerose.

Bei Krebserkrankungen jedoch scheint das Immunsystem an die Leine gelegt. Krebszellen stammen aus körpereigenem Gewebe, weshalb das Immunsystem sie offenbar nur schwer erkennt. Und das, obwohl Krebszellen häufig auch Merkmale (Antigene) (griech. von antigennan - dagegen erzeugen) tragen, die sie als Tumorzellen und damit als krankhaft veränderte Zellen kenntlich machen.

Diese Toleranz gegenüber Krebszellen wollen Prof. Thomas Blankenstein und seine Mitarbeiter im MDC und in der Charité jetzt durchbrechen. Sie nutzen dabei einen Prozess, der in Säugetieren automatisch aus unreifen T-Zellen reife Immunzellen macht. Unreife T-Zellen haben noch keinen T-Zell-Rezeptor. Sie müssen deshalb aus dem Knochenmark in den Thymus wandern. In dieser Drüse, die Teil des Immunsystems ist, lagern sich die Gene des T-Zell-Rezeptors, mit dem die T-Zelle das Antigen erkennt, nach dem Zufallsprinzip um.

Jede der millionenfach produzierten T-Zellen prägt nur einen T-Zell-Rezeptor auf der Zelloberfläche aus, mit dem ein Antigen erkannt wird. Im Thymus wird aber auch sichergestellt, dass alle T-Zellen, die körpereigene Strukturen erkennen, ausgeschaltet werden. T-Zellen, die spezifisch für fremde Antigene sind, werden von diesen Toleranzmechanismen verschont. Die Maus, beispielsweise, entwickelt keine Toleranz gegen Antigene menschlicher Krebszellen.

„Keine andere transgene Maus enthält vermutlich so viele menschliche Genabschnitte“

T-Zell-Rezeptoren bestehen aus einer alpha und einer beta Kette. Prof. Blankenstein und seine Mitarbeiter haben DNA-Bausteine des Menschen für diese Ketten mit Hilfe eines künstlichen Chromosoms (YAC - Yeast Artificial Chromosome) vermehrt und dann in embryonale Stammzellen der Maus geschleust. Insgesamt waren es circa 2 Millionen DNA-Bausteine, was 2 Megabasen oder rund 170 Gensegmenten entspricht. „Vermutlich enthält keine andere transgene Maus so viele menschliche Genabschnitte“, sagt Prof. Blankenstein.

Transgene Maus mit humanen T-Zell-Rezeptoren
Mit den mit humaner DNA beladenen embryonalen Stammzellen züchteten die Forscher in Berlin in zehnjähriger Entwicklungsarbeit transgene Mäuse, die auf ihren T-Zellen alle möglichen T-Zell-Rezeptoren des Menschen bilden. „Diese humanen T-Zell-Rezeptoren in der Maus erkennen humane Antigene menschlicher Krebszellen. Für die Mäuse sind humane Tumorantigene fremd, erläutert Prof. Blankenstein das Ergebnis. „Solche hochwirksamen T-Zell-Rezeptoren gibt es beim Menschen nicht. Sie werden beim Menschen zerstört, um zu verhindern, dass sie körpereigene Strukturen angreifen. Übrig bleiben nur T-Zellen mit weniger wirksamen T-Zell-Rezeptoren“, betont er.

Ziel ist, „hoch-affine“ humane T-Zell-Rezeptoren der Maus, für die menschliche Krebs-Antigene fremd sind, zu isolieren und in die T-Zellen von Krebspatienten einzuschleusen. Dadurch sollen die wirkungslosen T-Zellen der Patienten hochwirksam für die Zerstörung der Krebszellen gemacht werden. Im Gegensatz zu einer Knochenmarktransplantation, bei der im Empfänger viele T-Zellen des Transplantats aktiviert werden, was zu lebensgefährlicher Zerstörung gesunder Zellen führen kann, ist dieser Therapieansatz sehr selektiv. Damit hoffen die Forscher eine überschießende Reaktion des Immunsystems zu vermeiden.

Ob die hochgerüsteten humanen T-Zellen aus der Maus im Menschen ihre große Wirksamkeit behalten, wird sich aber erst noch zeigen müssen. Derzeit bereiten die Forscher eine erste klinische Studie vor, in der sie die Wirksamkeit und Verträglichkeit dieser T-Zell-Rezeptoren bei Krebspatienten erproben werden.

Prof. Blankenstein ist auch Sprecher des Transregio-Sonderforschungsbereich (SFB) „Grundlagen und Anwendungen der adoptiven T-Zell-Therapie“ in Berlin und München. Dieser von der Deutschen Forschungsgemeinschaft bis 2014 geförderte SFB erforscht neue Ansätze in der Krebstherapie unter Zuhilfenahme des Immunsystems. An dem Projekt sind in Berlin neben der Charité und dem MDC auch das Deutsche Rheumaforschungszentrum beteiligt, sowie in München das „Helmholtz Zentrum München Deutsches Forschungszentrum für Umwelt und Gesundheit“ und die Technische Universität und die Ludwig-Maximilians-Universität.

*Transgenic mice with a diverse human T-cell antigen receptor repertoire

Liang-Ping Li1,2*, J. Christoph Lampert1,2*, Xiaojing Chen1,2, Catarina Leitao1,2, Jelena Popoviæ1,2, Werner Müller3 and Thomas Blankenstein1,2

1 Max-Delbrück-Center for Molecular Medicine, Robert-Rössle Strasse 10, 13092 Berlin, Germany
2 Institute of Immunology, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany

3 Bill Ford Chair in Cellular Immunology, University of Manchester, Faculty of Life Sciences, Oxford Road, Manchester, M13 9PT

*These authors contributed equally to this work

Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/
Claudia Peter
Stv. Leiterin Unternehmenskommunikation
Charité - Universitätsmedizin Berlin
Charitéplatz 1
10117 Berlin
Tel. +49-(0) 30 450 570 - 503
Fax: +49-(0) 30 450 570 - 940
e-mail: Claudia.Peter@charite.de

Barbara Bachtler | Max-Delbrück-Centrum
Weitere Informationen:
http://www.charite.de/
http://www.mdc-berlin.de/
http://www.sfb-tr36.com/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

nachricht Die Evolutionsgeschichte der Wespen, Bienen und Ameisen erstmals entschlüsselt
23.03.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen

Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko

23.03.2017 | Medizin Gesundheit

Die Evolutionsgeschichte der Wespen, Bienen und Ameisen erstmals entschlüsselt

23.03.2017 | Biowissenschaften Chemie