Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Schlagkraft gegen Krebs

09.08.2010
Wie wird das Immunsystem schlagkräftiger gegen Krebs? Forscher vom Max-Delbrück-Centrum (MDC) und der Charité – Universitätsmedizin in Berlin haben in zehnjähriger Entwicklungsarbeit die Rezeptoren bestimmter Immunzellen (T-Zellen), die T-Zell-Rezeptoren, so geschärft, dass sie Krebszellen künftig nicht mehr unerkannt links liegen lassen, sondern gezielt aufspüren. Das ist die Voraussetzung dafür, dass das Immunsystem die Krebszellen zerstören kann. Die Forscher entwickelten eine Maus mit einem ganzen Arsenal dieser T-Zell-Rezeptoren des Menschen (Nature Medicine, doi: 10.1038/nm.2197)*. Ziel ist, diese Rezeptoren für eine gezielte Immuntherapie bei Patienten einzusetzen.

Die T-Zellen des Immunsystems tragen auf ihrer Oberfläche Rezeptoren, mit deren Hilfe sie Bakterien, Viren, Pilze erkennen und dafür sorgen, dass das Immunsystem die fremden Eindringlinge bekämpft und zerstört. Gleichzeitig müssen T-Zellen aber fremde von körpereigenen Proteinen (Eiweißen) unterscheiden, damit das Immunsystem körpereigenes Gewebe toleriert. Kann das Immunsystem diese Unterscheidung nicht mehr treffen, attackiert es körpereigene Strukturen und es entstehen sogenannte Autoimmunerkrankungen, wie zum Beispiel Diabetes Typ 1 oder Multiple Sklerose.

Bei Krebserkrankungen jedoch scheint das Immunsystem an die Leine gelegt. Krebszellen stammen aus körpereigenem Gewebe, weshalb das Immunsystem sie offenbar nur schwer erkennt. Und das, obwohl Krebszellen häufig auch Merkmale (Antigene) (griech. von antigennan - dagegen erzeugen) tragen, die sie als Tumorzellen und damit als krankhaft veränderte Zellen kenntlich machen.

Diese Toleranz gegenüber Krebszellen wollen Prof. Thomas Blankenstein und seine Mitarbeiter im MDC und in der Charité jetzt durchbrechen. Sie nutzen dabei einen Prozess, der in Säugetieren automatisch aus unreifen T-Zellen reife Immunzellen macht. Unreife T-Zellen haben noch keinen T-Zell-Rezeptor. Sie müssen deshalb aus dem Knochenmark in den Thymus wandern. In dieser Drüse, die Teil des Immunsystems ist, lagern sich die Gene des T-Zell-Rezeptors, mit dem die T-Zelle das Antigen erkennt, nach dem Zufallsprinzip um.

Jede der millionenfach produzierten T-Zellen prägt nur einen T-Zell-Rezeptor auf der Zelloberfläche aus, mit dem ein Antigen erkannt wird. Im Thymus wird aber auch sichergestellt, dass alle T-Zellen, die körpereigene Strukturen erkennen, ausgeschaltet werden. T-Zellen, die spezifisch für fremde Antigene sind, werden von diesen Toleranzmechanismen verschont. Die Maus, beispielsweise, entwickelt keine Toleranz gegen Antigene menschlicher Krebszellen.

„Keine andere transgene Maus enthält vermutlich so viele menschliche Genabschnitte“

T-Zell-Rezeptoren bestehen aus einer alpha und einer beta Kette. Prof. Blankenstein und seine Mitarbeiter haben DNA-Bausteine des Menschen für diese Ketten mit Hilfe eines künstlichen Chromosoms (YAC - Yeast Artificial Chromosome) vermehrt und dann in embryonale Stammzellen der Maus geschleust. Insgesamt waren es circa 2 Millionen DNA-Bausteine, was 2 Megabasen oder rund 170 Gensegmenten entspricht. „Vermutlich enthält keine andere transgene Maus so viele menschliche Genabschnitte“, sagt Prof. Blankenstein.

Transgene Maus mit humanen T-Zell-Rezeptoren
Mit den mit humaner DNA beladenen embryonalen Stammzellen züchteten die Forscher in Berlin in zehnjähriger Entwicklungsarbeit transgene Mäuse, die auf ihren T-Zellen alle möglichen T-Zell-Rezeptoren des Menschen bilden. „Diese humanen T-Zell-Rezeptoren in der Maus erkennen humane Antigene menschlicher Krebszellen. Für die Mäuse sind humane Tumorantigene fremd, erläutert Prof. Blankenstein das Ergebnis. „Solche hochwirksamen T-Zell-Rezeptoren gibt es beim Menschen nicht. Sie werden beim Menschen zerstört, um zu verhindern, dass sie körpereigene Strukturen angreifen. Übrig bleiben nur T-Zellen mit weniger wirksamen T-Zell-Rezeptoren“, betont er.

Ziel ist, „hoch-affine“ humane T-Zell-Rezeptoren der Maus, für die menschliche Krebs-Antigene fremd sind, zu isolieren und in die T-Zellen von Krebspatienten einzuschleusen. Dadurch sollen die wirkungslosen T-Zellen der Patienten hochwirksam für die Zerstörung der Krebszellen gemacht werden. Im Gegensatz zu einer Knochenmarktransplantation, bei der im Empfänger viele T-Zellen des Transplantats aktiviert werden, was zu lebensgefährlicher Zerstörung gesunder Zellen führen kann, ist dieser Therapieansatz sehr selektiv. Damit hoffen die Forscher eine überschießende Reaktion des Immunsystems zu vermeiden.

Ob die hochgerüsteten humanen T-Zellen aus der Maus im Menschen ihre große Wirksamkeit behalten, wird sich aber erst noch zeigen müssen. Derzeit bereiten die Forscher eine erste klinische Studie vor, in der sie die Wirksamkeit und Verträglichkeit dieser T-Zell-Rezeptoren bei Krebspatienten erproben werden.

Prof. Blankenstein ist auch Sprecher des Transregio-Sonderforschungsbereich (SFB) „Grundlagen und Anwendungen der adoptiven T-Zell-Therapie“ in Berlin und München. Dieser von der Deutschen Forschungsgemeinschaft bis 2014 geförderte SFB erforscht neue Ansätze in der Krebstherapie unter Zuhilfenahme des Immunsystems. An dem Projekt sind in Berlin neben der Charité und dem MDC auch das Deutsche Rheumaforschungszentrum beteiligt, sowie in München das „Helmholtz Zentrum München Deutsches Forschungszentrum für Umwelt und Gesundheit“ und die Technische Universität und die Ludwig-Maximilians-Universität.

*Transgenic mice with a diverse human T-cell antigen receptor repertoire

Liang-Ping Li1,2*, J. Christoph Lampert1,2*, Xiaojing Chen1,2, Catarina Leitao1,2, Jelena Popoviæ1,2, Werner Müller3 and Thomas Blankenstein1,2

1 Max-Delbrück-Center for Molecular Medicine, Robert-Rössle Strasse 10, 13092 Berlin, Germany
2 Institute of Immunology, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany

3 Bill Ford Chair in Cellular Immunology, University of Manchester, Faculty of Life Sciences, Oxford Road, Manchester, M13 9PT

*These authors contributed equally to this work

Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/
Claudia Peter
Stv. Leiterin Unternehmenskommunikation
Charité - Universitätsmedizin Berlin
Charitéplatz 1
10117 Berlin
Tel. +49-(0) 30 450 570 - 503
Fax: +49-(0) 30 450 570 - 940
e-mail: Claudia.Peter@charite.de

Barbara Bachtler | Max-Delbrück-Centrum
Weitere Informationen:
http://www.charite.de/
http://www.mdc-berlin.de/
http://www.sfb-tr36.com/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten