Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr als nur ein Nervtöter: Atomare Struktur von Alzheimer-Protein APP aufgeklärt

10.03.2010
Wissenschaftler vom Leibniz-Institut für Altersforschung - Fritz-Lipmann-Institut in Jena - klären dreidimensionale Teilstruktur des Amyloid-Vorläuferproteins (APP) auf. Proteinkristallographie macht atomaren Aufbau und räumliche Molekülstruktur sichtbar. Spaltprodukte dieses Proteins können Alzheimer auslösen, APP erfüllt aber auch wichtige biologische Funktionen.

Alzheimer ist die häufigste Form der Altersdemenz. Ausgelöst wird diese Krankheit durch unlösliche Eiweißbestandteile, die sich in der Umgebung von Nervenzellen ablagern und dort Plaques bilden.

Diese Proteinklumpen - auch Beta-Amyloide genannt - schädigen die Nervenzellen, bis diese schließlich absterben. Mittlerweile ist bekannt, dass diese neurotoxischen Eiweißablagerungen aus Spaltprodukten eines bestimmten Makromoleküls bestehen, das auf der Membran von Nervenzellen zu finden ist. Amyloid-Vorläufer-Protein (APP) wird dieses Membranmolekül genannt.

"Es ist unwahrscheinlich, dass der biologische Sinn dieses Membranmoleküls darin besteht, Plaques zu bilden, Nervenzellen zu töten und damit eine der schlimmsten Formen von Demenz auszulösen. Man vermutet, dass dies eher ein unerwünschter Nebeneffekt ist", sagt Dr. Manuel Than. Der Forschungsgruppenleiter vom Leibniz-Institut für Altersforschung, Fritz-Lipmann-Institut in Jena - analysiert mit seinem Team die atomare Struktur des Amyloid-Vorläufer-Proteins, um dessen biologische Grundfunktionen ergründen zu können.

Den Jenaer Forschern ist es gelungen, einen wesentlichen Teil dieses Proteins - die so genannte E1-Domäne - zu kristallisieren und dessen atomare Struktur aufzuklären. Durch Bestrahlung von Proteinkristallen mit Röntgenstrahlung erzeugen die Wissenschaftler sogenannte "Beugungsdaten". Durch ein computergestütztes Verfahren werden diese dann in ein hochaufgelöstes, dreidimensionales Abbild oder "Modell" des Moleküls umgewandelt. Dieses Modell beschreibt den atomaren Aufbau und die räumliche Struktur des Moleküls. So zeigte sich, dass die E1-Domäne eine starre Faltungseinheit bildet. "Anders als bisher angenommen, stellen die bisher bekannten Funktionsabschnitte, eine Kupferbindungsstelle und ein Wachstumsfaktor-ähnlicher Abschnitt, eine funktionale Einheit dar", sagt Than.

"Form follows function" - die Form bestimmt die Funktion - lautet dabei der Leitsatz der Wissenschaftler. "Solche Makromoleküle sind nicht nur spezifisch gefaltet, sie bilden auch ganz unterschiedliche Zusammenlagerungen. Und diese unterschiedlichen Molekülverbände nehmen im Organismus oft verschiedene physiologische Funktionen wahr", erklärt der Wissenschaftliche Mitarbeiter Sven Dahms. So wird vermutet, dass APP eine Rolle bei der Interaktion zwischen Zellen spielt, aber auch bei der Kommunikation der Zelle mit ihrer Umgebung, der extrazellulären Matrix. Auch als Wachstumsfaktor sowie bei der Übertragung von Signalen in der Zelle scheint APP in Erscheinung zu treten. Womöglich ist das Molekül an der Kappung von Nervenfortsätzen, den Axonen, beteiligt und vermag damit neuronale Verknüpfungen aufzulösen. "Bisher gab es kaum Informationen über die Struktur dieses Membranmoleküls, die mit diesen unterschiedlichsten Funktionen in Verbindung gebracht werden konnten", erläutert Than.

Das Amyloid-Vorläufer-Protein besteht aus drei Abschnitten, einem Transmembran-Teil, der beide Schichten der Zellmembran durchdringt, einem großen extrazellulären Abschnitt, der aus der Zelle herausragt sowie einem kleineren Bereich im Innern der Zelle. Die untersuchte E1-Domäne ist Teil des extrazellulären Abschnittes. Die Jenaer Proteinkristallographen haben nun herausgefunden, dass sich die E1-Domäne und in Konsequenz das gesamte Protein zu einem Doppelmolekül zusammenlagert, wenn der pharmakologische Wirkstoff Heparin zugegeben wird. Heparin-ähnliche Substanzen kommen im Körper als sogenannte Heparansulfate häufig vor. Als Bestandteil der extrazellulären Matrix sind sie also vor allem außerhalb der Zellen anzutreffen. Solche Doppelmoleküle, auch Dimere genannt, findet man häufig bei Rezeptoren, die bei der Signalübertragung mitwirken. Außerdem werden sie als verbindende Elemente bei der Zusammenlagerung von unterschiedlichen Zellen beobachtet. Die Jenaer Forscher sehen in der Heparin-abhängigen Dimerisierung einen strukturellen Hinweis auf die Rolle von APP bei der Signalübertragung bzw. Zelladhäsion.

Dieses Heparin-vermittelte E1-Dimer konnten die Forscher auch biochemisch nachweisen. Dabei zeigte sich zudem die pH-Abhängigkeit der Wechselwirkung zwischen den E1-Teilbereichen. "Die verschiedenen Erscheinungsformen und unterschiedlichen Funktionen von APP haben die Wissenschaft lange irritiert. Unsere Ergebnisse lassen nun vermuten, dass das Amyloid-Vorläufer-Protein an unterschiedlichen Stellen in der Zelle verschiedene Formen annimmt bzw. in verschiedenen Molekülverbänden auftritt und somit jeweils andere Funktionen erfüllen kann", erklärt Biochemiker Dahms. Entscheidend für die jeweilige Struktur und Funktion sind womöglich die jeweiligen Zellbereiche und Organellen, in denen das APP seine Wirkung entfaltet. Auch von Gewebe zu Gewebe könnten sich Struktur und Funktion von APP ändern. Verantwortlich dafür sind höchst-wahrscheinlich variierende pH-Werte und Heparansulfatvorkommen.

"In Zukunft wird sich die Forschung daher darauf konzentrieren, die zellort- und organspezifischen Formen und Funktionen von APP aufzuklären", sagt Than. Doch eines ist jetzt schon klar: APP ist weitaus mehr als nur ein neurotoxischer "bad guy".

Kontakt:
PD Dr. Manuel E. Than
Leibniz-Institut für Altersforschung - Fritz-Lipmann-Institut (FLI)
Beutenbergstr. 11, D-07745 Jena
Tel. +49 3641 656170, Fax +49 3641 656335, than@fli-leibniz.de
Originalveröffentlichung:
Structure and biochemical analysis of the heparin-induced E1 dimer of the amyloid precursor pro-tein
Sven O. Dahms, Sandra Höfgen, Dirk Röser, Bernhard Schlott, Karl-Heinz Gührs, Manuel E. Than

PNAS, published online before print March 8, 2010, doi:10.1073/pnas.0911326107

Alzheimerforschung am FLI Jena:
Das Amyloid-Vorläufer-Protein (APP) ist durch seine Alzheimer auslösenden Spaltprodukte ein wichtiges Biomolekül des Alterns. Die röntgenkristallographische Aufklärung der atomaren Struktur und des räumlichen Aufbaus des APP-Moleküls wird langfristig dabei helfen, gezielte Alzheimer-Therapien zu entwickeln. Für das Fritz-Lipmann-Institut Jena bedeutet der Wiederaufbau der Proteinkristallographie durch die Arbeitsgruppe Than eine weitere Stärkung der strukturanalytischen Forschungsschwerpunkte in der Altersforschung.

Das Thema Neurodegeneration hat am FLI einen besonders hohen Stellenwert. "Wir bearbeiten dieses Feld mit mehreren Forschungsgruppen und verschiedenen Ansätzen. Forschungsfragen sind neben der Entstehung und Wirkung pathogener Alzheimerfibrillen, der Funktion APP-spaltender Enzyme und der Strukturaufklärung von APP auch die Verknüpfung neurodegenerativer Prozesse mit dem Hormonsystem und der DNA-Reparatur", so Institutsleiter Prof. Dr. Peter Herrlich. Vernetzt sind diese Forschungsarbeiten auch mit klinisch orientierten Fragestellungen in der Neurologie des Universitätsklinikums Jena.

Dr. Eberhard Fritz | idw
Weitere Informationen:
http://www.fli-leibniz.de/groups/than.php

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie