Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Erkenntnisse aus Gewebeproben gewinnen

08.04.2014

Forscherteam zeigt Vorteile der HOPE-Fixierungsstrategie auf

Eine neue Methode, Patientengewebe für Untersuchungen aufzubereiten, könnte bald zum Standard werden. Das empfehlen Wissenschaftler des Helmholtz-Zentrums für Infektionsforschung (HZI) und des Forschungszentrums Borstel in ihrer aktuellen Veröffentlichung im Journal of Proteome Research.


TU Braunschweig/Zelluläre Infektionsbiologie

Mit Legionellen infiziertes menschliches Lungengewebe, wie es Ärzte bei der Legionärskrankheit beobachten. Durch Immunfärbung eines Legionella-Proteins (rotbraun) kann man Bakterien-haltige Vakuolen und einzelne Legionellen im Inneren von Fresszellen nachweisen. Das Gewebe wurde durch HOPE fixiert – somit kann der Infektionsprozess auch unmittelbar mit Hilfe der Proteomik untersucht werden.

Sie haben herausgefunden, dass durch die sogenannte HOPE-Methode Gewebeproben so aufbereitet werden können, dass sie die Bedürfnisse der klinischen Histologie erfüllen und trotzdem später durch moderne Methoden der Proteomik, die die Gesamtheit aller Proteine untersucht, charakterisiert werden können.

Dies gelingt, da die Struktur des Gewebes so „fixiert“ wird, dass die Eiweißmoleküle für die systematische Analyse zugänglich bleiben. So erfüllt die Technik die heutigen Anforderungen an die personalisierte Medizin und eröffnet neue Möglichkeiten in der Erforschung von Krankheiten und ihren Therapien. 

HOPE steht für „Hepes-glutamic acid buffer mediated Organic solvent Protection Effect“ und ist eine Methode, um Gewebeproben für spätere Untersuchungen zu konservieren.

Der Blick durchs Mikroskop auf eine Gewebeprobe verrät dem Wissenschaftler oder Pathologen sehr viel über den Gesundheitszustand des Patienten. Um das Gewebe zu konservieren, werden die entnommenen Proben üblicherweise mit Formalin fixiert, in wachsartiges Paraffin eingebettet und in hauchdünne Scheiben geschnitten. Diese werden eingefärbt und ermöglichen es dem geübten Auge, Gewebestrukturen zu unterscheiden sowie Diagnosen und Prognosen zu erstellen.

Der Nachteil dieser Proben ist allerdings, dass Formalin die in der Zelle vorhandenen Eiweißmoleküle, die Proteine, miteinander vernetzt. Dadurch können sie nur schwer analysiert werden. Um solche Untersuchungen dennoch durchführen zu können, benötigten Wissenschaftler bisher schockgefrorene Proben – die wiederum für die histologische Begutachtung am Mikroskop ungeeignet sind. „So konnten wir bisher nicht den genauen Zustand des untersuchten Gewebes mit den Ergebnissen der Proteomik in Verbindung setzen“, sagt HZI-Forscher Prof. Lothar Jänsch. „Dies ist jedoch eine wichtige Voraussetzung, um Proteine als Biomarker, also als Indikator für bestimmte Krankheiten, oder neue Wirkstoffziele zu erkennen.“ 

Gemeinsam mit Wissenschaftlern vom Forschungszentrum Borstel, der LungenClinic Grosshansdorf, der Technischen Universität Braunschweig und der Ostfalia Hochschule für angewandte Wissenschaften hat Jänsch jetzt gezeigt, dass die Behandlung von Gewebe mit der HOPE-Technik alle Vorteile gängiger Fixiermethoden vereint. Die Proben werden dabei mit einem organischen, Formalin-freien Puffer und Aceton behandelt und anschließend von Paraffin umhüllt. 

Das Forscherteam verglich schockgefrorenes und HOPE-behandeltes Lungengewebe aus Patienten. Im Gegensatz zu den schockgefrorenen Proben konnte die HOPE-Fixierung die Gewebestrukturen bewahren und Lungenbläschen blieben beispielsweise gut sichtbar. Anschließend nutzten die Forscher die Massenspektrometrie, um im Gewebe vorhandene Proteine zu charakterisieren. Das daraus abgeleitete Proteom sagt bereits viel über den Gesundheitszustand des Gewebes aus.

Die Wissenschaftler gingen noch einen Schritt weiter und untersuchten zudem das sogenannte Phosphoproteom, also die Gesamtheit aller Protein-Moleküle, die in der Zelle gerade „an- oder ausgeschaltet“ sind. Zu wissen, welche Proteine aktiv sind, trägt zur Diagnose von Krankheiten bei und kann helfen, Angriffsziele für neue Medikamente zu finden. Die Ergebnisse sind vielversprechend: Die HOPE-Methode bewahrt nicht nur die Struktur der Gewebe, sondern ist für die Proteomik und die Phosphoproteomik genauso geeignet ist wie das Schockgefrieren von Gewebe.

„Aufgrund unserer Ergebnisse empfehlen wir HOPE als Fixierungsstrategie für Kliniken und Biobanken, die sich an der Verbesserung von Diagnose und Therapien beteiligen“, sagt Jänsch.

Das Forscherteam wendet diese Erkenntnis bereits auf seine Forschung an der Legionärskrankheit an, eine durch Bakterien hervorgerufene Infektionskrankheit, die mit einer Lungenentzündung einhergeht. Hier besteht eine enge Kooperation mit Dr. Torsten Goldmann vom Forschungszentrum Borstel. „Wir konnten bereits ein Infektionsmodell der menschlichen Lunge etablieren. Jetzt wissen wir, dass die HOPE-Technik dieses Modell auch für Analysen des Proteoms und des Phosphoproteoms zugänglich macht“, sagt Prof. Michael Steinert, Koordinator eines vom Bundesministerium für Bildung und Forschung geförderten Projekts zu diesem Thema. „Bei den Proteomanalysen erkennen wir aktuell bereits deutliche Unterschiede in den Geweben verschiedener Spender und beginnen, den individuellen Infektionsprozess der Legionärskrankheit besser zu verstehen.“ So wird HOPE seinem Namen gerecht und gibt begründeten Anlass zur Hoffnung auf neue Erkenntnisse in der Erforschung, Diagnose und Therapie von Krankheiten. 

Originalpublikation: Olga Shevchuk, Nada Abidi, Frank Klawonn, Josef Wissing, Manfred Nimtz, Christian Kugler, Michael Steinert, Torsten Goldmann, Lothar Jänsch HOPE-fixation of lung tissue allows retrospective proteome and phosphoproteome studies Journal of Proteome Research, 2014, DOI: 10.1021/pr500096a

Die Arbeitsgruppe „Zelluläre Proteomforschung“ untersucht Veränderungen des Proteoms, der Gesamtheit aller Proteine von Zellen im Verlauf von Infektionsprozessen. Diese geben Aufschluss darüber, welche Prozesse in Immunzellen an- oder abgeschaltet oder durch Krankheitserreger manipuliert werden. 

Das Helmholtz-Zentrum für Infektionsforschung:

Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern.

www.helmholtz-hzi.de 

Presse- und Öffentlichkeitsarbeit
Helmholtz-Zentrum für Infektionsforschung GmbH
Inhoffenstraße 7
D-38124 Braunschweig
 
Tel  0531 6181-1401
Fax 0531 6181-1499

Besuchen Sie uns im Social Web:

Facebook: http://www.facebook.com/helmholtz.hzi

Twitter: http://twitter.com/helmholtz_hzi 

www.helmholtz-hzi.de 

Presse- und Öffentlichkeitsarbeit | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/mehr_erkenntnisse_aus_gewebeproben_gewinnen/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften