Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Erkenntnisse aus Gewebeproben gewinnen

08.04.2014

Forscherteam zeigt Vorteile der HOPE-Fixierungsstrategie auf

Eine neue Methode, Patientengewebe für Untersuchungen aufzubereiten, könnte bald zum Standard werden. Das empfehlen Wissenschaftler des Helmholtz-Zentrums für Infektionsforschung (HZI) und des Forschungszentrums Borstel in ihrer aktuellen Veröffentlichung im Journal of Proteome Research.


TU Braunschweig/Zelluläre Infektionsbiologie

Mit Legionellen infiziertes menschliches Lungengewebe, wie es Ärzte bei der Legionärskrankheit beobachten. Durch Immunfärbung eines Legionella-Proteins (rotbraun) kann man Bakterien-haltige Vakuolen und einzelne Legionellen im Inneren von Fresszellen nachweisen. Das Gewebe wurde durch HOPE fixiert – somit kann der Infektionsprozess auch unmittelbar mit Hilfe der Proteomik untersucht werden.

Sie haben herausgefunden, dass durch die sogenannte HOPE-Methode Gewebeproben so aufbereitet werden können, dass sie die Bedürfnisse der klinischen Histologie erfüllen und trotzdem später durch moderne Methoden der Proteomik, die die Gesamtheit aller Proteine untersucht, charakterisiert werden können.

Dies gelingt, da die Struktur des Gewebes so „fixiert“ wird, dass die Eiweißmoleküle für die systematische Analyse zugänglich bleiben. So erfüllt die Technik die heutigen Anforderungen an die personalisierte Medizin und eröffnet neue Möglichkeiten in der Erforschung von Krankheiten und ihren Therapien. 

HOPE steht für „Hepes-glutamic acid buffer mediated Organic solvent Protection Effect“ und ist eine Methode, um Gewebeproben für spätere Untersuchungen zu konservieren.

Der Blick durchs Mikroskop auf eine Gewebeprobe verrät dem Wissenschaftler oder Pathologen sehr viel über den Gesundheitszustand des Patienten. Um das Gewebe zu konservieren, werden die entnommenen Proben üblicherweise mit Formalin fixiert, in wachsartiges Paraffin eingebettet und in hauchdünne Scheiben geschnitten. Diese werden eingefärbt und ermöglichen es dem geübten Auge, Gewebestrukturen zu unterscheiden sowie Diagnosen und Prognosen zu erstellen.

Der Nachteil dieser Proben ist allerdings, dass Formalin die in der Zelle vorhandenen Eiweißmoleküle, die Proteine, miteinander vernetzt. Dadurch können sie nur schwer analysiert werden. Um solche Untersuchungen dennoch durchführen zu können, benötigten Wissenschaftler bisher schockgefrorene Proben – die wiederum für die histologische Begutachtung am Mikroskop ungeeignet sind. „So konnten wir bisher nicht den genauen Zustand des untersuchten Gewebes mit den Ergebnissen der Proteomik in Verbindung setzen“, sagt HZI-Forscher Prof. Lothar Jänsch. „Dies ist jedoch eine wichtige Voraussetzung, um Proteine als Biomarker, also als Indikator für bestimmte Krankheiten, oder neue Wirkstoffziele zu erkennen.“ 

Gemeinsam mit Wissenschaftlern vom Forschungszentrum Borstel, der LungenClinic Grosshansdorf, der Technischen Universität Braunschweig und der Ostfalia Hochschule für angewandte Wissenschaften hat Jänsch jetzt gezeigt, dass die Behandlung von Gewebe mit der HOPE-Technik alle Vorteile gängiger Fixiermethoden vereint. Die Proben werden dabei mit einem organischen, Formalin-freien Puffer und Aceton behandelt und anschließend von Paraffin umhüllt. 

Das Forscherteam verglich schockgefrorenes und HOPE-behandeltes Lungengewebe aus Patienten. Im Gegensatz zu den schockgefrorenen Proben konnte die HOPE-Fixierung die Gewebestrukturen bewahren und Lungenbläschen blieben beispielsweise gut sichtbar. Anschließend nutzten die Forscher die Massenspektrometrie, um im Gewebe vorhandene Proteine zu charakterisieren. Das daraus abgeleitete Proteom sagt bereits viel über den Gesundheitszustand des Gewebes aus.

Die Wissenschaftler gingen noch einen Schritt weiter und untersuchten zudem das sogenannte Phosphoproteom, also die Gesamtheit aller Protein-Moleküle, die in der Zelle gerade „an- oder ausgeschaltet“ sind. Zu wissen, welche Proteine aktiv sind, trägt zur Diagnose von Krankheiten bei und kann helfen, Angriffsziele für neue Medikamente zu finden. Die Ergebnisse sind vielversprechend: Die HOPE-Methode bewahrt nicht nur die Struktur der Gewebe, sondern ist für die Proteomik und die Phosphoproteomik genauso geeignet ist wie das Schockgefrieren von Gewebe.

„Aufgrund unserer Ergebnisse empfehlen wir HOPE als Fixierungsstrategie für Kliniken und Biobanken, die sich an der Verbesserung von Diagnose und Therapien beteiligen“, sagt Jänsch.

Das Forscherteam wendet diese Erkenntnis bereits auf seine Forschung an der Legionärskrankheit an, eine durch Bakterien hervorgerufene Infektionskrankheit, die mit einer Lungenentzündung einhergeht. Hier besteht eine enge Kooperation mit Dr. Torsten Goldmann vom Forschungszentrum Borstel. „Wir konnten bereits ein Infektionsmodell der menschlichen Lunge etablieren. Jetzt wissen wir, dass die HOPE-Technik dieses Modell auch für Analysen des Proteoms und des Phosphoproteoms zugänglich macht“, sagt Prof. Michael Steinert, Koordinator eines vom Bundesministerium für Bildung und Forschung geförderten Projekts zu diesem Thema. „Bei den Proteomanalysen erkennen wir aktuell bereits deutliche Unterschiede in den Geweben verschiedener Spender und beginnen, den individuellen Infektionsprozess der Legionärskrankheit besser zu verstehen.“ So wird HOPE seinem Namen gerecht und gibt begründeten Anlass zur Hoffnung auf neue Erkenntnisse in der Erforschung, Diagnose und Therapie von Krankheiten. 

Originalpublikation: Olga Shevchuk, Nada Abidi, Frank Klawonn, Josef Wissing, Manfred Nimtz, Christian Kugler, Michael Steinert, Torsten Goldmann, Lothar Jänsch HOPE-fixation of lung tissue allows retrospective proteome and phosphoproteome studies Journal of Proteome Research, 2014, DOI: 10.1021/pr500096a

Die Arbeitsgruppe „Zelluläre Proteomforschung“ untersucht Veränderungen des Proteoms, der Gesamtheit aller Proteine von Zellen im Verlauf von Infektionsprozessen. Diese geben Aufschluss darüber, welche Prozesse in Immunzellen an- oder abgeschaltet oder durch Krankheitserreger manipuliert werden. 

Das Helmholtz-Zentrum für Infektionsforschung:

Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern.

www.helmholtz-hzi.de 

Presse- und Öffentlichkeitsarbeit
Helmholtz-Zentrum für Infektionsforschung GmbH
Inhoffenstraße 7
D-38124 Braunschweig
 
Tel  0531 6181-1401
Fax 0531 6181-1499

Besuchen Sie uns im Social Web:

Facebook: http://www.facebook.com/helmholtz.hzi

Twitter: http://twitter.com/helmholtz_hzi 

www.helmholtz-hzi.de 

Presse- und Öffentlichkeitsarbeit | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/mehr_erkenntnisse_aus_gewebeproben_gewinnen/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit