Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Medikamente aus Krabbenschalen

13.02.2012
An der TU Wien wurden Pilze mit zusätzlichen Fremd-Genen erzeugt: Sie produzieren nun pharmakologische Substanzen aus Krabbenschalen.
Schimmelpilze sind normalerweise eher kein Grund zur Freude – doch nun können sie als „chemische Fabriken“ eingesetzt werden: An der Technischen Universität Wien gelang es, Gene von Bakterien in Pilze der Gattung Trichoderma einzubringen, sodass die Pilze nun in der Lage sind, wichtige Chemikalien für die Arzneimittelerzeugung herzustellen. Der Rohstoff, den die Pilze dafür brauchen, ist reichlich vorhanden: Chitin, aus dem zum Beispiel die Panzer von Krustentieren aufgebaut sind. Die neue Methode konnte bereits zum Patent angemeldet werden.

Fünfzig mal teurer als Gold

Bei viralen Infekten wie etwa der Influenza werden häufig Virustatika eingesetzt, die eine Verbreitung des Virus im Organismus verhindern sollen. Diese Medikamente sind oft Derivate der N-Acetylneuraminsäure (kurz: NANA), die heute aus natürlichen Ressourcen gewonnen oder chemisch hergestellt wird – allerdings ist NANA fünfzig mal teurer als Gold: Die Chemikalie kostet etwa 2000 Euro pro Gramm. Ein Forschungsteam der TU Wien, geleitet von der Biotechnologin Astrid Mach-Aigner, machte sich daher auf die Suche nach einer neuen umweltfreundlichen Herstellungsmethode für NANA, und dieses Ziel wurde nun erreicht.

Entscheidend dafür war das umfangreiche Wissen über die Genetik der Trichoderma-Pilze, das man am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften der TU Wien schon seit Jahren gesammelt hatte. Neben einem Team dieses Instituts (R. Gorsche, A. Mach-Aigner, R. Mach, M. Steiger) war auch das Institut für Angewandte Synthesechemie (M. Mihovilovic) und das Institut für Chemische Technologien und Analytik (E. Rosenberg) an dem durch den FWF geförderten Projekt beteiligt.

Bakterien-Gene für den Schimmelpilz
Der Schimmelpilz Trichoderma ist weit verbreitet: Er kommt in Böden, Wald und Wiesen vor. „Wir wussten, dass Trichoderma Chitin abbauen kann – genau das macht der Pilz im Boden mit Chitin“, erklärt Astrid Mach-Aigner. Dadurch war Trichoderma ein vielversprechender Kandidat für das Forschungsprojekt. Um den Pilz allerdings dazu zu bringen, das gewünschte chemische Endprodukt zu erzeugen, musste man ihm noch Gene einbauen, die in Bakterien vorkommen. „Normalerweise baut Trichoderma das Chitin zu monomeren Aminozuckern ab“, sagt Mach-Aigner. Durch die neuen Gene kommt es nun zu zwei weiteren chemischen Reaktionsschritten – und am Ende entsteht der gewünschte Arzneimittelrohstoff N-Acetylneuraminsäure.

Chitin als Bio-Rohstoff

Chitin ist nach Zellulose der zweithäufigste Bio-Polymer der Erde. Er kommt in Panzern von Krebsen und Insekten, aber auch in Schnecken und Kopffüßern sowie in der Zellwand von Pilzen vor. Man schätzt, dass allein im Meer jährlich zehn Milliarden Tonnen Chitin gebildet werden – einige hundert mal mehr als das Körpergewicht der gesamten Menschheit. Chitin ist also ein nachhaltiger nachwachsender Rohstoff für chemische Syntheseprozesse.

Der neu entwickelte Trichoderma-Stamm kann nun in Bio-Reaktoren kultiviert werden und dort Chitin in die wertvolle Säure umwandeln. Das Verfahren wurde von der TU Wien bereits patentiert und soll nun für eine billigere und umweltfreundliche Produktion von pharmakologischen Substanzen im industriellen Maßstab eingesetzt werden.

Rückfragehinweis:
Dr. Astrid Mach-Aigner
Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften
Technische Universität Wien
Gumpendorfer Straße 1a, 1060 Wien
+43-1-58801-166558
astrid.mach-aigner@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://www.microbialcellfactories.com/content/10/1/102

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics