Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mechanismus zur Verhinderung von exzessivem Zelltod und Entzündungen entdeckt

18.08.2014

Die Arbeitsgruppe von Prof. Dr. Manolis Pasparakis am Exzellenzcluster CECAD an der Universität zu Köln hat neue Erkenntnisse gewonnen zu Prozessen des Zelltods und wie sie Entzündungen hervorrufen oder verhindern können. Dies eröffnet eventuell neue Behandlungsperspektiven für Patienten mit Darm- und Hauterkrankungen, die durch Entzündungen hervorgerufen werden. Die Ergebnisse wurden gestern (17.08.2014) im renommierten Wissenschaftsjournal Nature erstmals publiziert.

Während der gesamten Lebensspanne eines Organismus sterben Zellen in vielen Geweben auf natürliche Weise ab und werden durch neue Zellen ersetzt. Diese zelluläre Erneuerung ist wichtig für die Funktionalität des gesamten Organismus. Hierbei ist ein Fließgleichgewicht (Homöostase) zwischen Zelltod und Neuproduktion wichtig:


Prof. Dr. Manolis Pasparakis (CECAD)

Uniklinik Köln (CECAD)

„Eine erhöhte Zellproduktion, kombiniert mit verringertem Zelltod kann beispielsweise zur Entwicklung eines Tumors führen. Exzessiver Zelltod andererseits kann die Zerstörung von Gewebe verursachen und zur Entstehung verschiedener Erkrankungen beitragen“, so Prof. Dr. Manolis Pasparakis, Arbeitsgruppenleiter am Exzellenzcluster CECAD (Cellular Stress Responses in Aging-Associated Diseases) in Köln.

Die sogenannte Apoptose ist der am meisten untersuchte Prozess des programmierten Zelltods. Hierbei ist der kontrollierte Abbau von absterbenden Zellen sichergestellt und die Zelle stirbt, ohne das Nachbargewebe zu schädigen. Die Nekroptose dagegen ist eine erst kürzlich identifizierte Form des programmierten Zelltods. Sie führt zur Freisetzung von potentiell schädlichen Zellbestandteilen aus den absterbenden Zellen, was Entzündungen hervorrufen kann.

Die neuen Forschungsergebnisse der Arbeitsgruppe von Prof. Dr. Pasparakis und seiner Kooperationspartner zeigen einen neu entdeckten Mechanismus auf, der einen übermäßigen Zelltod und die damit verbundene Schädigung von Gewebe und Entzündungen im Darm und der Haut verhindern kann. Pasparakis und sein Team entdeckten, dass das Enzym RIPK1, das normalerweise in allen Zellen vorhanden ist, einen solchen übermäßigen Zelltod in Epithelzellen der Haut und des Darms verhindert.

Fehlte dieses Enzym in den Epithelzellen des Darms, starben diese Zellen durch Apoptose. Der durch Apoptose verursachte Verlust von Darmepithelzellen führte zu Gewebeschäden und zu einem starken Schwund von Darmzotten, die maßgeblich für die Aufnahme von Nährstoffen im Darm verantwortlich sind. Wurde wiederum die Apoptose dieser Darmepithelzellen verhindert, starben die Zellen durch Nekroptose, was eine Darmentzündung auslöste.

Fehlte RIPK1 in den Zellen der äußeren Hautschicht (Keratinozyten), starben sie sowohl durch Apoptose als auch Nekroptose und es entwickelte sich eine schwere entzündliche Hauterkrankung. Überraschenderweise konnte durch Unterbindung der Nekroptose, ausgelöst durch die Entfernung von RIPK3 oder MLKL – zweier Proteine, die für die Einleitung der Nekroptose essentiell sind – eine entzündliche Hauterkrankung vollständig verhindert werden, obwohl Apoptose weiterhin stattfand.

Maßgeblich auslösend für den Tod derjenigen Darm- und Hautepithelzellen, in denen RIPK1 fehlt, ist TNF, ein Zytokin, das an der Entstehung von entzündlichen Darmerkrankungen (Morbus Crohn und Colitis Ulcerosa) sowie von Psoriasis beteiligt ist. „TNF ist bei der Entstehung zahlreicher Erkrankungen der Haut wie des Darms beteiligt – Morbus Crohn, Colitis Ulcerosa und Psoriasis.

Medikamente, die TNF blockieren, werden bereits erfolgreich in der klinischen Therapie eingesetzt. Unsere Erkenntnisse weisen darauf hin, dass das Enzym RIPK1 möglicherweise durch die Regulierung des TNF-induzierten Zelltodes von Epithelzelle die Entstehung von entzündlichen Erkrankungen im Darm und der Haut beeinflusst. In Zukunft könnte das ein Ansatzpunkt für neue Therapien sein“, erklärt Prof. Pasparakis.

Originalarbeit:
Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L, Eftychi C, Lin J, Corona T, Hermance N, Zelic M, Kirsch P, Basic M, Bleich A, Kelliher M & Pasparakis M (2014) RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature, August 17, 2014

Für Rückfragen:

Prof. Dr. Manolis Pasparakis
CECAD Cluster of Excellence
Telefon: 0221 478-84351
E-Mail: pasparakis@uni-koeln.de

Christoph Wanko
Pressesprecher Uniklinik Köln
Stabsabteilung Unternehmenskommunikation und Marketing
Telefon: 0221 478-5548
E-Mail: presse@uk-koeln.de

Christoph Wanko | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uk-koeln.de/

Weitere Berichte zu: Apoptose Colitis Darm Entzündungen Enzym Haut Hauterkrankung Mechanismus Morbus Nekroptose Organismus TNF Ulcerosa Zellen Zelltod

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie