Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mechanismus des bakteriellen Geruchssinns entdeckt

19.05.2017

Wissenschaftler des Moskauer Instituts für Physik und Technologie (MIPT) haben in Zusammenarbeit mit Kollegen vom Forschungszentrum Jülich, dem Institut de Biologie Structurale (IBS) und der European Synchrotron Radiation Facility (ESRF) in Grenoble eine Erklärung für einen universellen Mechanismus entwickelt, der Bakterien einen „Geruchssinn“ verleiht. Dazu wurde die Struktur des NarQ-Proteins aus dem Bakterium Escherichia coli (E. coli) entschlüsselt. Es zählt zu einer universellen Klasse sensorischer Histidinkinasen, die in Bakterien für die Übertragung von Signalen über ihre Umgebung verantwortlich sind. Der in der Fachzeitschrift Science veröffentlichte Artikel trägt zum Verständnis der Kommunikation von Bakterien untereinander bei und zeigt, wie sie Biofilme auf sterilen Oberflächen oder im menschlichen Körper bilden.

Wirkstoffe, die diesen bakteriellen „Geruchssinn“ beeinflussen, könnten in Zukunft als Ersatz für konventionelle Antibiotika Verwendung finden. Diese Wirkstoffe würden die Bakterien nicht abtöten, sondern ihnen lediglich Signale zuführen, die sie für den menschlichen Körper harmlos machen würden. Theoretisch wäre in diesem Fall auch die Entwicklung von Resistenzen nicht möglich.


Mechanismus der Signalübertragung durch das NarQ-Protein

Copyright: Ivan Gushchin, Moscow Institute of Physics and Technology

Alle Zellen sind von ihrer Umgebung durch eine dichte Membran isoliert, die kaum eine chemische Substanz durchdringen kann. Das ermöglicht es der Zelle, ihren inneren chemischen Zustand konstant und funktionsfähig zu halten. Jedoch schränkt die Membran auch den Informationsaustausch mit der Umgebung erheblich ein.

Um herauszufinden, was außerhalb passiert, verwenden Zellen spezielle molekulare Maschinen – Proteine. Die Proteine, die zur Kommunikation mit der Umgebung dienen, „leben“ oft in der Membran selbst oder in ihrer Nähe und sind verantwortlich für die Übertragung von Signalen oder chemischen Substanzen in die Zelle oder aus ihr heraus.

Der häufigste Mechanismus, über den Bakterien ihre Umgebung sensorisch erfassen können, sind sogenannte Zweikomponentensysteme. Solche Systeme bestehen aus zwei Proteinen: einer Kinase, die das Signal von Außen aufnimmt und es in die Zelle weiterleitet, und einem Antwortregulator, der das Signal in der Zelle empfängt und Folgereaktionen auslöst.

Ein nützliches Verfahren zum Verständnis der Funktionsweise von Proteinen ist die Untersuchung ihrer Struktur mit atomischer Genauigkeit. Bislang wurden die meisten Proteinstrukturen (mehr als 100.000) mithilfe von Röntgenkristallografie erzielt. Dieses Verfahren erfordert die Aufzeichnung des Beugungsmusters von im Gitter angeordneten Proteinmolekülen. Jedoch offenbart dies nur die Struktur eines einzelnen Zustandes des Proteins, wie bei einem Foto. Durch Fotografieren des Anfangs- und Endzustandes eines Prozesses kann abgeleitet werden, wie genau das Protein funktioniert, wenn es zwischen diesen Zuständen umschaltet.

Membran-„Kolben“ treiben Zell-Geruchssinnn

Die Autoren der Studie konnten die Struktur zweier Zustände der NarQ-Kinase aus E. coli bestimmen. Diese Kinase „fühlt“ die Anwesenheit von Nitraten in der Umgebung und sendet ein entsprechendes Signal durch die Zellmembran. Wie sich herausstellte, ist der Sensor in beiden Zuständen ein Dimer, d. h. zwei Proteinmoleküle fangen gemeinsam das Nitrat ein. Der erste Zustand ist inaktiv – das Protein ist nicht an das Nitrat-Ion gebunden und überträgt kein Signal. Im Gegensatz dazu ist der zweite Zustand aktiv: In diesem Zustand überträgt die Kinase ein Signal in die Zelle hinein, um sie zu informieren, dass in der Umgebung Nitrate vorhanden sind.

Die Proteinstruktur im aktiven Zustand wurde beim verlässlichsten „Wildtyp“-Protein entschlüsselt, einem Protein ohne die künstlichen Mutationen, die von Wissenschaftlern oft genutzt werden, um die Stabilität von Proteinen zu erhöhen. Um die Struktur im inaktiven Zustand aufzuzeichnen, mutierten die Autoren den Abschnitt, an den das Nitrat andockt. Die Stabilität des Proteins wurde dadurch nicht beeinflusst; jedoch dockte das Nitrat nicht mehr daran an, sodass die Autoren die Möglichkeit hatten, eine Kinase im inaktiven Zustand zu beobachten.

Es stellte sich heraus, dass der Signal-Zustand sich nur äußerst geringfügig vom inaktiven Zustand unterscheidet: um 0,5–1 Ångström, was etwa einem Fünftel der Größe des gesamten Ions entspricht (1 Ångström entspricht 10-10 m). Jedoch bringt das Andocken dieses Ions an den Sensor starke Veränderungen im Protein mit sich. Die Helices verschiedener Monomere beginnen, sich wie Kolben in entgegengesetzten Richtungen zu bewegen.

Diese „Kolben“ übertragen die kleine Veränderung um 0,5 bis 1 Ångström durch die Membran und ihre äußeren Enden verschieben sich um etwa 2,5 Ångström in entgegengesetzte Richtungen. In der Zelle, in der HAMP-Domäne, werden diese Verschiebungen in die entgegengesetzte Drehung der zwei Teile von NarQ übersetzt. Schließlich verändern sich die Positionen der Output-Helices um ganze 7 Ångström, womit die Signalübertragung abgeschlossen ist.

Neben den Strukturen, in denen die beiden Proteine ein symmetrisches Paar bilden, konnten die Wissenschaftler eine Struktur mit asymmetrischer Position der beiden Proteine produzieren. In diesem Zustand wird das Protein im Kristall anders angeordnet und ist stark gebogen. Jedoch bleibt der Effekt auf den den Antwortregulator beinahe unverändert. Die Vielseitigkeit der beobachteten Bewegung ermöglicht die Aussage, dass das Signalübertragungssystsem universell ist und dass die Sensoren anderer chemischer Verbindungen über den gleichen „Kolben-Verschiebe“-Mechanismus wirken könnten.

„Wie Signale durch die Zellmembran übertragen werden ist eine der wichtigsten Grundsatzfragen der modernen Biologie. In dieser Studie haben wir genau gezeigt, wie ein Signal (in diesem Fall das Anbinden des Nitrats) über hunderte von Ångström in die Zellen von Bakterien und Archaeen sowie von Pilzen und Pflanzen transportiert wird.

Wir erwarten vom besseren Verständnis dieses Signalübertragungsmechanismus, dass wir herausfinden können, wie solche Zellen manipuliert werden können – vor allem, um die schädlichen Effekte pathogener Mikroorganismen abzuschwächen oder zu neutralisieren“ meint Ivan Gushchin, Leiter des Laboratory of Structural Analysis and Engineering of Membrane Systems am MIPT und zur Zeit der Studie ebenfalls Mitarbeiter des Institute of Complex Systems: Strukturbiochemie (ICS-6) am Forschungszentrum Jülich.

„Das Aufklären der strukturellen Grundlagen von Informationsverarbeitung in biologischen Systemen mit atomarer Genauigkeit ist ein faszinierendes Forschungsfeld“ sagt Dieter Willbold, Direktor des ICS-6. „Informationsgewinnung und -integration sowie anschließende Entscheidungsfindung sind absolut zentrale Prozesse für das Phänomen, das wir als Leben bezeichnen.“


Originalpublikation: Ivan Gushchin, Igor Melnikov, Vitaly Polovinkin, Andrii Ishchenko, Anastasia Yuzhakova, Pavel Buslaev, Gleb Bourenkov, Sergei Grudinin, Ekaterina Round, Taras Balandin, Valentin Borshchevskiy, Dieter Willbold, Gordon Leonard, Georg Büldt, Alexander Popov, Valentin Gordeliy
"Mechanism of transmembrane signaling by sensor histidine kinases", Science published online May 18, 2017, DOI: 10.1126/science.aah6345

Weitere Informationen:

Institute of Complex Systems, Strukturelle Biochemie (ICS-6)

Ansprechpartner:

Dr. Ivan Gushchin
Moscow Institute of Physics and Technology
141700 Institutsky per. 9, Dolgoprudny, Russia
Tel.: +7 965 428-22-24
E-Mail: ivan.gushchin@phystech.edu

Prof. Dr. Valentin Gordeliy
Institute of Complex Systems, Strukturbiochemie (ICS-6)
Forschungszentrum Jülich
Moscow Institute of Physics and Technology
Institute de Biologie Structurale (CEA-CNRS-UJF), Grenoble
Tel.: +49 2461 61-9509
E-Mail: g.valentin@fz-juelich.de

Prof. Dieter Willbold
Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich
Institut für Physikalische Biologie der Heinrich-Heine-Universität Düsseldorf
Tel. +49 2461 61-2100
E-Mail: d.willbold@fz-juelich.de

Pressekontakt:

Peter Zekert
Forschungszentrum Jülich
Tel.: +49 2461 61-6041 / +49 2461 61-9486
E-Mail: p.zekert@fz-juelich.de

Peter Zekert | Forschungszentrum Jülich GmbH
Weitere Informationen:
http://fz-juelich.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher beschreiben neuartigen Antikörper als möglichen Wirkstoff gegen Alzheimer
22.08.2017 | Martin-Luther-Universität Halle-Wittenberg

nachricht Virus mit Eierschale
22.08.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

22.08.2017 | Physik Astronomie

Forscher beschreiben neuartigen Antikörper als möglichen Wirkstoff gegen Alzheimer

22.08.2017 | Biowissenschaften Chemie

Virus mit Eierschale

22.08.2017 | Biowissenschaften Chemie