Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

New mechanism for cancer progression discovered by UNC and Harvard researchers

27.11.2012
The protein Ras plays an important role in cellular growth control. Researchers have focused on the protein because mutations in its gene are found in more than 30 percent of all cancers, making it the most prevalent human oncogene.
University of North Carolina Lineberger Comprehensive Cancer Center and Harvard researchers have discovered an alternative mechanism for activating Ras that does not require mutation or hormonal stimulus. In healthy cells, Ras transmits hormone signals into the cell that prompt responses such as cell growth and the development of organs and tissues. A mutation on the RAS gene can chronically activate those signals, leading to tumor initiation and progression.

In an article published on-line in a November issue of Nature Structural and Molecular Biology, the UNC and Harvard teams discovered that modification of Ras at a specific site with a small protein known as ubiquitin can also lock Ras into an active signaling state. Thus, modification of Ras with a single ubiquitin – a process known as monoubiquitination - switches Ras to an active signaling state by disrupting the action of another protein known as the GTPase activating protein, or GAP. Work by two of the papers co-authors, Atsuo Sasaki and Lewis Cantley of Harvard, had previously found evidence for Ras’s potential to become activated and promote Ras-mediated tumorigenesis by monoubiquitination.

Because of the strong link between Ras and cancer, Ras should be an attractive target for drug discovery efforts. Despite considerable efforts at developing treatments targeting the protein, Ras itself is now considered to be ‘undruggable’, leading researchers to try new approaches to developing drugs that target activated Ras. This could lead to benefits beyond cancer therapies, as the RAS gene has also been linked to developmental disorders such as Noonan syndrome, Costello syndrome and autoimmune lymphoproliferative syndrome.

Lead researcher Rachael Baker, a PhD candidate doing joint work in the labs of Henrik Dohlman, PhD, professor of pharmacology and vice chair of biochemistry and biophysics and Sharon Campbell, PhD, professor of biochemistry and biophysics at UNC, developed a novel method to modify Ras with ubiquitin and then subsequently characterized how ubiquitin modification can lead to Ras activation.

The attachment of ubiquitin to Ras at a specific site leads to Ras activation, much like with an oncogenic mutation, leading to an increased potential for cancer formation. Baker notes that the reaction can be reversed by enzymes in the cell that remove ubiquitin, making these enzymes possible targets for future pharmaceutical research.

“Establishing how Ras is activated by ubiquitin is just the first step in understanding this novel mechanism of cellular regulation.” said Campbell.

The researchers next step will be to obtain a more detailed understanding of its role in cancer progression, first in cells and in animals and eventually in cancer patients.

Research was done in conjunction with Brian Kuhlman and Steven Lewis in the UNC Department of Biochemistry and Biophysics. The work was supported by NIH grants R01CA089614 (S.L.C.), R01GM073180–06S1 (H.G.D.), R01GM073960 and R01GM073151, and R01GM41890 and P01CA117969 (L.C.C.), the Program in Molecular and Cellular Biophysics and NIH grant T32GM008570, the Japanese Society for the Promotion of Science Research Fellowship for Research Abroad, Kanae Foundation for Research Abroad and a Genentech Fellowship.

William Davis | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics