Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MDC- und Charité-Forscher identifizieren Gen, das Bluthochdruck und Kurzfingrigkeit auslöst

12.05.2015

Die Betroffenen haben ererbten Bluthochdruck und zugleich eine Skelettfehlbildung (Brachydaktylie Typ E). Sie sterben vor dem 50. Lebensjahr, wenn ihr Bluthochdruck nicht behandelt wird.

Nach über 20 Jahren Arbeit haben Forscher vom Experimental and Clinical Research Center (ECRC) des Max-Delbrück-Centrums (MDC) und der Charité jetzt das Gen identifiziert, das dieses ungewöhnliche und seltene Krankheitsbild auslöst.


Die Kurzfingrigkeit (Brachydaktylie) wird in einer türkischen Familie immer mit dem Bluthochdruck gemeinsam vererbt. (Oben die Hände einer betroffenen Frau, unten die Hände einer gesunden Frau.)

(Photo: Hakan Toka/ Copyright: MDC)

In sechs nicht miteinander verwandten Familien entdeckten sie sechs unterschiedliche Punktmutationen in dem Gen PDE3A. Diese führen stets zu Bluthochdruck und zu verkürzten Knochen der Extremitäten, insbesondere der Mittelhand- und Mittelfußknochen (Nature Genetics online)*.

Damit haben die MDC- und Charité-Forscher den ersten vererbten von Salz unabhängigen Bluthochdruck entschlüsselt. Er basiert nicht auf der Rückresorption von Salz durch die Niere sondern auf dem Aufbau und der Funktion der Gefäßwand.

„Als wir mit der Erforschung dieser Erkrankung 1994 anfingen und die größte der betroffenen Familien erstmals in der Türkei untersuchten, gab es weder die modernen Methoden der Gensequenzierung noch die umfangreichen Gendatenbanken“, erklärt PD Dr. Sylvia Bähring, Letztautorin der Publikation aus der Forschungsgruppe von Prof. Friedrich C. Luft, die lange Suche nach der Ursache dieses Erbleidens.

„Goldschatz der Genetik“

1996 war es der Forschungsgruppe durch den Vergleich der Erbanlagen der gesunden und erkrankten Familienmitglieder gelungen, die Chromosomenregion einzukreisen, innerhalb der das "Krankheitsgen" zu finden sein musste. Sie lag auf einem Abschnitt von Chromosom 12 und war geschätzte 10 Millionen Basenpaare groß.

„Auf die Spur des Gens“, so Dr. Bähring, „hat uns dann aber letztlich ein 16 Jahre alter türkischer Junge gebracht. Er ist quasi unser Goldschatz der Genetik.“ Er hatte ebenfalls sehr hohen Blutdruck – er wird wie alle anderen Betroffenen mit blutdrucksenkenden Medikamenten behandelt – aber seine Hände sind fast normal ausgebildet. Nur die Mittelhandknochen seiner kleinen Finger sind leicht verkürzt.

Die Durchforstung der Erbanlagen mehrerer Betroffener mit Hilfe der Ganzgenomsequenzierung hat es Dr. Philipp G. Maass, Dr. Atakan Aydin, Prof. Luft, Dr. Okan Toka (früher MDC/Charité, jetzt Friedrich-Alexander-Universität Erlangen), Dr. Carolin Schächterle (MDC-Forschungsgruppe PD Dr. Enno Klußmann) sowie PD Dr. Bähring vor kurzem ermöglicht, das Gen und sechs unterschiedliche Punktmutationen in insgesamt sechs Familien aus der ganzen Welt dingfest zu machen.

Es ist das Gen PDE3A, das den Bauplan für das Enzym Phosphodiesterase 3A enthält. Die sechs verschiedenen Punktmutationen, die die Forscher in dem PDE3A-Gen aufspürten, führten zum Austausch eines einzelnen, in jeder Familie eines anderen, DNA-Bausteins. Durch jeden Austausch wird jeweils eine Aminosäure des Enzyms verändert.

Ein Gen – zwei unterschiedliche Krankheitsbilder

Aber wie kann ein Gen, wenn es mutiert ist, zwei so unterschiedliche Krankheiten wie Bluthochdruck und Kurzfingrigkeit auslösen? Die Erklärung dafür liefern die ECRC-Forscher in ihrer Forschungsarbeit gleich mit. Die Aufgabe der Phosphodiesterase des Gens PDE3A ist es, die Menge der in allen Zellen vorkommenden beiden sekundären Botenstoffe, des cAMP (Cyclisches Adenosinmonophosphat) und des cGMP (Cyclisches Guanosinmonophosphat), zu kontrollieren und damit die Dauer ihrer Aktivität zu regulieren.

Die Mutationen im Gen PDE3A führen jedoch dazu, dass das Enzym Phosphodiesterase verstärkt aktiv ist, und somit zu viel von dem sekundären Botenstoff cAMP (Cyclisches Adenosinmonophosphat) zu AMP (Adenosinmonophosphat) umbaut, die Zelle also zu wenig cAMP zur Verfügung hat. Die Folge davon ist, dass sich die glatten Muskelzellen der Gefäßwand kleiner Arterien bei betroffenen Familienmitgliedern vermehrt teilen. Dadurch verdickt die Gefäßmuskelschicht und die Blutgefäße verengen und versteifen, was den Blutdruck in die Höhe treibt. Außerdem führt ein zu geringer cAMP-Spiegel in den Gefäßmuskelzellen auch zu einer erhöhten Kontraktion der Blutgefäße.

Was aber machen erniedrigte cAMP-Spiegel in der Entwicklung der Extremitätenknochen? Das Gen, das die Skelettfehlbildung Brachydaktylie Typ E auslöst, ist PTHLH (engl. parathyroid hormone like hormone). In Knorpelzellen bindet in der Steuerregion des Gens ein Transkriptionsfaktor (CREB), der durch cAMP aktiviert wird. Dieser Faktor sorgt dafür, dass das Gen abgelesen wird und das Knorpelwachstum beeinflussen kann. Ist zu wenig cAMP in der Knorpelzelle, ist dieser Mechanismus gestört. Das führt dann zur Verkürzung der Mittelhand- und Mittelfußknochen und damit zur Verkürzung von Fingern und Zehen. So kann eine Punktmutation durch die Veränderung der zellulären Signalweitergabe in einem Menschen zwei unterschiedliche Krankheiten hervorrufen.

Neue Sicht auf Bluthochdruckentstehung

Die Forscher weisen darauf hin, dass der von ihnen in den Familien untersuchte Bluthochdruck unabhängig vom Salzkonsum der Betroffenen ist. Bisher geht die Forschung davon aus, dass zu viel Salz in der Nahrung die Nieren schädigt und damit den Blutdruck in die Höhe treibt. „Wir haben in unserer Studie gezeigt, dass für die Entstehung dieser genetisch vererbbaren Form des Bluthochdrucks ausschließlich die Blutgefäße von Bedeutung sind und nicht direkt die Niere“, hebt PD Dr. Bähring die Bedeutung dieser Forschungsarbeit hervor.

Erstbeschreibung der Krankheit 1973

1973 hatte der türkische Arzt Prof. Nihat Bilginturan von der Universität Haceteppe in Ankara, Türkei, erstmals das von den Forschern in Berlin jetzt entschlüsselte Krankheitsbild beschrieben. Ihm war aufgefallen, dass in einer Großfamilie an der Schwarzmeerküste einige Mitglieder mit verkürzten Fingern und Zehen – Mediziner nennen das Brachydaktylie (von griechisch brachus für kurz und daktylos für Finger) – seltsamerweise alle schon in jungen Jahren einen sehr hohen Blutdruck haben und relativ früh sterben. Unbehandelt führt der Bluthochduck, der bei den Betroffenen im Schnitt 50 mm Hg über dem Normalwert von 140/90 mm Hg liegt, noch vor dem 50. Lebensjahr zum Tod, meist durch einen Schlaganfall. Entdeckt hatte die Publikation und damit den Stein ins Rollen gebracht der Genetiker Prof. Thomas Wienker (früher MDC und Universität Bonn, jetzt Max-Planck-Institut für Molekulare Genetik, Berlin).

*Nature Genetics online, doi:10.1038/ng.3302
PDE3A mutations cause autosomal-dominant hypertension with brachydactyly
Philipp G. Maass1,2,36, Atakan Aydin1,2,36, Friedrich C. Luft1,2,3,36*, Carolin Schächterle2,36,Anja Weise4, Sigmar Stricker5,6, Carsten Lindschau7,8, Martin Vaegler1,9, Fatimunnisa Qadri1,2, Hakan R. Toka10,11, Herbert Schulz2,12, Peter M. Krawitz5,13,14, Jochen Hecht5,14, Irene Hollfinger2, Yvette Wefeld-Neuenfeld2, Eireen Bartels-Klein2, Astrid Mühl2, Martin Kann15, Herbert Schuster16, David Chitayat17,18, Martin G. Bialer19, Thomas F. Wienker5,20, Jürg Ott21,22, Katharina Rittscher4, Thomas Liehr4, Jens Jordan23, Ghislaine Plessis24, Jens Tank23, Knut Mai1, Ramin Naraghi24, Russell Hodge2, Maxwell Hopp26, Lars O. Hattenbach27, Andreas Busjahn28, Anita Rauch29, Fabrice Vandeput30,31, Maolian Gong1,2, Franz Rüschendorf2, Norbert Hübner2,32,33, Hermann Haller7, Stefan Mundlos5,13,14, Nihat Bilginturan34, Matthew A. Movsesian30,31, Enno Klussmann2,32, Okan Toka35, and Sylvia Bähring1,2,36
1Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité – Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany,
2Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany,
3Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA,
4Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany,
5Max Planck Institute for Molecular Genetics, Berlin, Germany,
6Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany,
7 Department of Nephrology, Hannover University Medical School, Hannover, Germany,
8Staatliche Technikerschule Berlin, Berlin,
9University Department of Urology, Laboratory of Tissue Engineering, Eberhard Karls University Tübingen, Tübingen, Germany,
10 Eastern Virginia Medical School, Division of Nephrology and Hypertension, 855 W Brambleton Ave, Norfolk, VA, USA,
11Brigham and Women’s Hospital, Division of Nephrology, MRB4, Boston, MA, USA,
12University of Cologne, Cologne Center for Genomics (CCG), Cologne, Germany,
13Institute for Medical Genetics and Human Genetics, Charité – Universitätsmedizin Berlin, Germany,
14Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité – Universitätsmedizin Berlin, Germany,
15Department II of Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,
16INFOGEN, Berlin, Germany,
17The Hospital for Sick Children, Department of Pediatrics, Division of Clinical and Metabolic Genetics, University of Toronto, Ontario, Canada,
18The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Ontario, Canada,
19Division of Medical Genetics and Department of Pediatrics, North Shore/LIJ Health System, Manhasset, NY, USA,
20Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Germany,
21Institute of Psychology, Chinese Academy of Sciences, Beijing, China,
22Statistical Genetics, Rockefeller University New York, NY, USA,
23Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany,
24Centre Hospitalier Universitaire de Caen, Cytogénétique postnatale et génétique Clinique, Caen, France,
25Department of Neurosurgery, Bundeswehrkrankenhaus Ulm, Germany,
26Griffith Base Hospital, Department of Pediatrics, Griffith, NSW, Australia,
27Department of Ophthalmology, Hospital Ludwigshafen, Ludwigshafen, Germany,
28HealthTwist GmbH, Berlin, Germany,
29Institute for Medical Genetics, University of Zurich, Switzerland,
30Cardiology Section, VA Salt Lake City Health Care System, Salt Lake City, UT, USA,
31Departments of Internal Medicine and Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA,
32DZHK, German Centre for Cardiovascular Research, Berlin, Germany,
33Charité – Universitätsmedizin, Berlin, Germany,
34Department of Pediatric Endocrinology, Hacettepe University, Turkey,
35Childrens Hospital, Department of Pediatric Cardiology, Friedrich-Alexander University Erlangen, Germany
36The authors contributed equally to this work.

Kontakt:
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/de

Barbara Bachtler | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie