Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MDC-Forscher steigern Effizienz des Redigierens im Erbgut – „Innovatives Forschungsgebiet“

25.03.2015

Sie trägt einen komplizierten Namen und ist eine neue Gentechnikmethode, die Forscher weltweit elektrisiert: die CRISPR-Cas9-Technik, mit der sich das Erbgut von Zellen und Organismen präzise und mit hoher Effizienz redigieren lässt. Jetzt haben Dr. Van Trung Chu und Prof. Klaus Rajewsky vom Max-Delbrück-Centrum (MDC) Berlin-Buch sowie Dr. Ralf Kühn (MDC und Berliner Institut für Gesundheitsforschung, BIH) das Verfahren, mit dem Gene gezielt verändert werden können, durch molekulare Tricks deutlich effizienter gemacht. Die Erfolgsrate der Methode konnte um das Achtfache erhöht werden, was die Grundlagenforschung massiv beschleunigt (Nature Biotechnology online, doi:10.1038/nbt.3198)**.

„Wofür früher Jahre benötigt wurden, genügen jetzt Monate“, hebt der Genforscher und Immunologe Prof. Rajewsky die Bedeutung der CRISP-Cas9-Technik zur Modifizierung des Genoms hervor. Das CRISP-Cas9-Verfahren macht Forschung nicht nur erheblich schneller, sondern ist zugleich auch effizienter und preiswerter als bisherige Verfahren und zudem leichter zu handhaben.

Die CRISPR-Cas9-Technik ermöglicht es an ausgewählten Positionen im Genom von Zellen oder Modellorganismen gezielte DNA-Doppelstrangbrüche zu erzeugen. An solchen künstlich herbeigeführten Bruchstellen können Forscher Gene einfügen, herausschneiden oder den genetischen Code nach Wunsch verändern.

Säugetierzellen verfügen über zwei verschiedene natürliche Mechanismen, um entstandene DNA-Doppelstrangbrüche zu reparieren. Der HDR (homology-directed repair) Reparaturweg ermöglicht das Einfügen (Insertion) vorgeplanter Genmodifikationen mit von außen zugeführten DNA-Molekülen, die Sequenzidentität mit dem Zielgen besitzen und als Reparaturmatrize dienen. Die HDR Reparatur ist sehr präzise aber nur wenig effizient.

Der andere Reparaturmechanismus, NHEJ (non-homologous end joining), ist in der Natur wesentlich häufiger und effizienter, da hierbei die DNA-Stränge ohne Reparaturmatrize einfach wieder neu verbunden werden, wobei häufig aber kurze Sequenzbereiche verloren werden. Die NHEJ Reparatur ermöglicht somit nur die Erzeugung kurzer, unpräziser Deletionen, also der Entfernung von DNA-Bausteinen, aber nicht von Insertionen und vorgeplanter Sequenzmodifikationen im Genom.

Viele Forscher arbeiten im Labor daran, die Reparaturverfahren für präzisere Modifizierungen des Genoms ohne Redigierfehler zu optimieren, so auch Dr. Van Trung, Prof. Rajewsky und Dr. Kühn. Ihnen gelang es jetzt, die Effizienz des präziser arbeitenden Reparaturverfahrens HDR zu erhöhen, indem sie den in Zellen dominanten Reparaturgehilfen von NHEJ, das Enzym DNA Ligase IV, vorübergehend ausschalteten. Dazu setzen sie unter anderem Proteine und „small molecules“ ein.

„Wir nutzen die Trickkiste der Natur, indem wir mit Hilfe von Proteinen von Adenoviren die Ligase IV blockierten und so die Effizienz des Verfahrens bis um das Achtfache erhöhen konnten“, sagt Dr. Kühn. So gelang es den Forschern in über 60 Prozent aller manipulierten Mauszellen ein Gen an einer bestimmten Stelle ins Genom einzufügen (Knock-In). Dr. Kühn leitet am MDC seit kurzem die Forschungsgruppe „iPS zellbasierte Krankheitsmodellierung“ und war zuvor am Helmholtz Zentrum München tätig. „Die Expertise von Ralf Kühn ist für die Genforschung am MDC und für unsere Forschungsgruppe von enormer Bedeutung“, betont Prof. Rajewsky.

Zeitgleich mit der Arbeit der MDC-Forscher ist eine weitere, ähnliche Publikation zur CRISPR-Cas9-Technologie ebenfalls in Nature Biotechnology erschienen. Sie stammt aus dem Labor von Hidde Ploegh am Whitehead Institut in Cambridge, MA, USA.

Ziel: Somatische Gentherapie von Krankheiten mit der CRISP-Cas9-Technik
Forscher setzen die erst 2012 entwickelte CRISP-Cas9-Technik bereits zur Korrektur von Gendefekten bei Mäusen im Labor ein. Eine weitere Einsatzmöglichkeit sind im Labor erstellte induzierte pluripotente Stammzellen (iPS), die in bestimmte menschliche Zellen oder Gewebe weiterentwickelt werden können. Mit den neuen Werkzeugen der CRISPR-Cas9 Technik können jetzt in Patienten identifizierte, krankheitsassoziierte Mutationen in iPS-Zellen eingeführt werden und ermöglichen die Erforschung von Krankheitsmechanismen direkt in menschlichen Zellen. „Langfristiges Ziel ist ebenfalls, die CRISPR-Cas9-Technik auch für die somatische Gentherapie beim Menschen zur Behandlung schwerer Erkrankungen einzusetzen“, erklärt Prof. Rajewsky.

Prof. Rajewsky: „Eines der aktuellsten Gebiete in den Lebenswissenschaften und ein innovatives Feld“
„Die Anwendung der CRISPR-Cas9-Technik ist derzeit eines der aktuellsten Themen in den Lebenswissenschaften und ein innovatives Feld“, erklärt Prof. Rajewsky. Er weist darauf hin, dass die neuen Möglichkeiten eines gezielten Redigierens des Erbguts in den USA zurzeit eine intensive Debatte ausgelöst haben, weil die neuen Präzisionswerkzeuge theoretisch auch gezielte Veränderungen der Keimbahn des Menschen ermöglichen. Letztere sind zwar in vielen Ländern, so auch Deutschland, gesetzlich verboten, aber ein weltweites Verbot gibt es nicht. Die MDC-Forscher sind zwar von den durch die CRISPR-Cas9-Technologie eröffneten neuen Chancen für die Grundlagenforschung und Biomedizin fasziniert, lehnen aber gentechnische Manipulation der menschlichen Keimbahn strikt ab.

**Increasing the efficiency of homology-directed repair for CRISPR/Cas9-induced precise gene editing in mammalian cells
Van Trung Chu1, Timm Weber1, Benedikt Wefers2,3, Wolfgang Wurst2,3,4 , Sandrine Sander1, Klaus Rajewsky1*, Ralf Kühn1,2,5*
1Max Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
2Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
3Deutsches Zentrum für Neurodegenerative Erkrankungen e. V., 81377 Munich, Germany
4Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
5Berlin Institute of Health, Kapelle-Ufer 2, 10117 Berlin, Germany
*corresponding authors

Kontakt:
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
in der Helmholtz-Gemeinschaft
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/de

Weitere Informationen:

http://www.sciencemag.org/content/early/2015/03/18/science.aab1028.full.pdf
http://www.nature.com/news/ethics-of-embryo-editing-divides-scientists-1.17131

Barbara Bachtler | Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie