Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MDC-Forscher lösen Rätsel um die Entstehung von Tumoren aus Immunzellen

24.09.2012
In den Keimzentren der Lymphorgane werden B-Zellen, die Antikörperproduzenten des Körpers, geschult, um gezielt Erreger zu bekämpfen.

Aus diesen B-Zellen gehen aber auch Tumore des Lymphgewebes (Lymphome) hervor. Dr. Dinis Calado und Prof. Klaus Rajewsky (Max-Delbrück-Centrum, MDC) haben jetzt zwei Untergruppen von B-Zellen in den Keimzentren identifiziert, in denen das Gen MYC, das eine zentrale Rolle für die Zellvermehrung spielt, aktiv ist.


In den Keimzentren des Immunsystems (hier in der Milz einer Maus) lernen Immunzellen, sich spezifisch auf Erreger einzustellen. Dr. Dinis Calado und Prof. Klaus Rajewsky haben jetzt Untergruppen von B-Zellen in den Keimzentren identifiziert, in denen das Gen MYC (rot) aktiv ist. Sie konnten zeigen, dass das Gen für die Bildung und Aufrechterhaltung der Keimzentren notwendig ist. Diese Erkenntnisse sind wichtig für das Verständnis der Entstehung von B-Zell-Lymphomen.

(Photo: Dinis Calado/Copyright: MDC)

Sie zeigen, dass MYC für die Bildung und Aufrechterhaltung der Keimzentren notwendig ist und auch Bedeutung für die Entstehung von B-Zell-Lymphomen hat, bei denen MYC oft stark ausgeprägt ist (Nature Immunology, doi.org/10.1038/ni.2418)*.

Das MYC-Gen reguliert in vielen Zellen des Körpers den Zellzyklus, also die Zellvermehrung. Bei vielen B-Zell-Lymphomen ist MYC übermäßig aktiv, da es fehlerhaft an eine andere Stelle im Erbgut verschoben wurde (chromosomale Translokation). Das jedoch stellte die Wissenschaft bisher vor Rätsel, denn Translokationen von MYC können nur in solchen Zellen stattfinden, in denen das Gen aktiv ist. „In den B-Zellen der Keimzentren, aus denen die meisten Lymphome hervorgehen, ließ sich aber bisher keine MYC-Aktivität nachweisen“, sagt Prof. Rajewsky. Es war also unverständlich, weshalb sich aus B-Zellen der Keimzentren dennoch Lymphome mit erhöhter MYC-Aktivität entwickeln.

Keimzentren befinden sich in den Lymphorganen, also in der Milz, den Lymphknoten und in den Peyer´schen Platten im Darm. Hier werden die B-Zellen mit Krankheitserregern konfrontiert und vermehren sich rapide. Damit das Immunsystem der großen Vielfalt an Erregern gewachsen ist, müssen die B-Zellen ihr Erbgut verändern, einerseits durch Mutationen, andererseits, indem sie ihre DNA auseinanderschneiden und neu zusammenfügen. Das ermöglicht ihnen, hochspezifische Antikörper herzustellen, um Krankheiten effektiv zu bekämpfen. Allerdings sind diese Prozesse, also schnelle Vermehrung und Veränderung des Erbguts, mit einer hohen Fehlerrate verbunden, sodass die Wahrscheinlichkeit für bösartige Veränderungen der B-Zellen in Keimzentren besonders hoch ist. „B-Zell-Lymphome sind der häufigste Lymphomtyp beim Menschen. Die meisten entwickeln sich entweder aus B-Zellen in den Keimzentren oder aus B-Zellen, die die Keimzentrumsreaktion durchlaufen haben“, erklären Dr. Calado und Prof. Rajewsky.

Welche Bedeutung hat in diesem Zusammenhang das MYC-Gen? Wie kann es sein, dass MYC in B-Zell-Lymphomen überaktiv ist, wenn es vorher in der gesunden B-Zelle keine Rolle spielt? Auf diese Fragen fanden die MDC-Forscher Dr. Calado und Prof. Rajewsky jetzt eine Antwort: Sie wiesen nach, dass es in den Keimzentren Untergruppen von B-Zellen gibt, in denen das MYC-Gen aktiv ist. Weiterhin zeigten sie, dass MYC sogar essentiell ist für die Entstehung und Aufrechterhaltung der Keimzentren. Blockierten die Forscher MYC, konnten sich keine Keimzentren bilden. „Die MYC-positiven Subpopulationen von Keimzentrums-B-Zellen bergen ein erhöhtes Risiko für die Entstehung von Lymphomen und in der Tat könnten sich viele B-Zell-Lymphome von Zellen dieser Subpopulationen ableiten“, so Dr. Calado und Prof. Rajewsky.

*The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers

Dinis Pedro Calado1,2, Yoshiteru Sasaki3, Susana A. Godinho4, Alex Pellerin1, Karl Köchert2, Barry P. Sleckman5, Ignacio Moreno de Alborán6, Martin Janz2,7, Scott Rodig8, & Klaus Rajewsky1,2

1Program of Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA; 2Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str 10, 13092 Berlin, Germany; 3Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; 4Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA; 5Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; 6Department of Immunology and Oncology, National Centre for Biotechnology, Darwin 3, Cantoblanco, E-28049 Madrid, Spain; 7Hematology, Oncology and Tumor Immunology, Charité, University Medical School, Augustenburger Platz 1, 13353 Berlin, Germany; 8Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.

Kontakt:
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
in der Helmholtz-Gemeinschaft
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Weitere Informationen:
http://www.mdc-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics