Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MDC-Forscher entwickeln Zellsystem, mit dem sie feinste Berührungen messen können

25.03.2014

Berührung tröstet uns. Sie ermuntert uns. Sie kann uns glücklich machen. Und sie beginnt in unserer Haut.

Genauer gesagt: In bestimmten Zellen, deren Nervenendigungen (Neuriten) sich in unserer Haut verteilen. Manche dieser Zellen sind so unfassbar sensitiv, dass es selbst Prof. Gary Lewin und Dr. Kate Poole überrascht hat, die seit Jahren die „Mechanorezeption“ der Tastempfindung erforschen.

Das Team um die beiden Wissenschaftler vom Berliner Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch hat ein System entwickelt, mit dem sich unvorstellbar kleine mechanische Reize auf eine einzige Zelle ausüben lassen (Nature Communications, doi: 10.1038/ ncomms4520)*.

Die empfindlichsten dieser Zellen „reagieren auf mechanische Veränderungen auf ihrer Oberfläche in der Größenordnung von ein paar Millionstel Millimeter“, erklärt Dr. Poole. Damit eine schmerzempfindliche Zelle „antwortet“ – sie funktioniert ähnlich wie eine mechanorezeptive Zelle – „braucht es einen erheblich stärkeren Reiz“, wie die Biologin nach den jüngsten Experimenten der MDC-Forscher betont.

Sie könnten wichtig sein, um neue Therapien für Menschen mit neuropathischen Schmerzen – etwa im Zuge einer Gürtelrose – zu entwickeln. Diese Patienten empfinden jeden kleinsten Tastreiz als qualvoll.

Die Berliner Forscher gingen nach ihren bisherigen Experimenten davon aus, dass die mechanorezeptiven Zellen für die Tastempfindung zwar entscheidend sind – aber nur im Kontext ihrer Umgebung, der sogenannten Matrix und einiger darin eingelagerter Moleküle. Denn ein Druck auf oder eine Bewegung über die Haut wirkt auf beides gleichzeitig. 

Um die Geheimnisse der Tastempfindung zu lüften, haben die Wissenschaftler erstmals ein künstliches System geschaffen, das die realen Bedingungen imitiert. Es sieht aus wie ein Nagelkissen im winzigen Maßstab von einigen tausendstel Millimetern. In diesem System lassen sich ganz feine und definierte mechanische Reize an mechanosensitive Zellen – in diesem Falle aus der Maus – setzen. Dabei können die Forscher zeitgleich die elektrische Antwort der Zelle messen. 

Es zeigt sich: Bewegt man einen der „Nägel“ dieses speziellen Nagelkissen um nur zehn Millionstel Millimeter, reagieren einige der mechanosensitiven Zellen und leiten den Reiz weiter – im intakten Organismus ans Gehirn. „Verblüffend“, wie Dr. Poole findet. Andere der mechanosensitiven Zellen sind etwas unempfindlicher. Offenbar verfügen Säugetiere über Gruppen unterschiedlich empfindlicher Tastsensoren. Schmerzsensitive Zellen aus der Haut der Maus müssen hingegen 1000 Mal stärker mechanisch gereizt werden, ehe sie aktiv werden. „Das ist auch sinnvoll“, betont Studienleiter Prof. Lewin, „sonst würden wir oft unnötig Schmerz empfinden.“

In einem zweiten Schritt wollten die MDC-Forscher wissen, welche Moleküle die deutlich unterschiedliche Empfindlichkeit von tast- und schmerzsensorischen Zellen vermitteln. Resultat: Ein Stoml3 bezeichnetes Protein steuert die variierende Sensitivität auf mechanische Reize maßgeblich. „Wenn man das Gen für Stoml3 ausschaltet“, so Dr. Poole, „verschwinden die Unterschiede in der Tastempfindlichkeit.“

Und: Stoml3 moduliert nach den Erkenntnissen der MDC-Forscher die Aktivität und Empfindlichkeit von zwei sogenannten Ionenkanälen, die in äußeren Hüllen (Membranen) vieler verschiedener Zelltypen zu finden sind. Diese Ionenkanäle heißen Piezo1 und Piezo2. Nach „starken Hinweisen“ ist Piezo2 an der Tastwahrnehmung beteiligt und leitet entsprechende Signale weiter, unter anderem „stark reguliert von Stoml3“, wie Prof. Lewin weiter erklärt. 

Zu verstehen, wie Stoml3 genau funktioniert, könnte neue Wege eröffnen, um neuropathische Schmerzen zu bekämpfen. Die Forscher wollen die hypersensitiven Tastsensoren in der Haut von Patienten blockieren. „Stoml3 ist dafür ein sehr guter Angriffspunkt“, erklärt Prof. Lewin. Das potenziell Interessante an der Entwicklung: Während etwa die Betäubungsspritze beim Zahnarzt alles Empfinden im Gewebe lahm legt, würde diese neue Therapieform nur die Umwandlung des mechanischen Reizes in elektrische Erregung bremsen. „Ansonsten könnte man weiter alles fühlen“, sagt Lewin, „Wärme, Kälte und so weiter.“

*Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch

Kate Poole1,*, Regina Herget1, Liudmila Lapatsina1, Ha-Duong Ngo2 and Gary R. Lewin1,*
Affiliations:1 Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, D-13092 Berlin, Germany.
2Microsensor & Actuator Technology, Technische Universität Berlin, D-13355 Berlin, Germany.

Kontakt:
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
in der Helmholtz-Gemeinschaft
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/

Barbara Bachtler | Max-Delbrück-Centrum

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

nachricht Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?
16.01.2017 | Leibniz-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie