Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MDC-Forscher entwickeln Zellsystem, mit dem sie feinste Berührungen messen können

25.03.2014

Berührung tröstet uns. Sie ermuntert uns. Sie kann uns glücklich machen. Und sie beginnt in unserer Haut.

Genauer gesagt: In bestimmten Zellen, deren Nervenendigungen (Neuriten) sich in unserer Haut verteilen. Manche dieser Zellen sind so unfassbar sensitiv, dass es selbst Prof. Gary Lewin und Dr. Kate Poole überrascht hat, die seit Jahren die „Mechanorezeption“ der Tastempfindung erforschen.

Das Team um die beiden Wissenschaftler vom Berliner Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch hat ein System entwickelt, mit dem sich unvorstellbar kleine mechanische Reize auf eine einzige Zelle ausüben lassen (Nature Communications, doi: 10.1038/ ncomms4520)*.

Die empfindlichsten dieser Zellen „reagieren auf mechanische Veränderungen auf ihrer Oberfläche in der Größenordnung von ein paar Millionstel Millimeter“, erklärt Dr. Poole. Damit eine schmerzempfindliche Zelle „antwortet“ – sie funktioniert ähnlich wie eine mechanorezeptive Zelle – „braucht es einen erheblich stärkeren Reiz“, wie die Biologin nach den jüngsten Experimenten der MDC-Forscher betont.

Sie könnten wichtig sein, um neue Therapien für Menschen mit neuropathischen Schmerzen – etwa im Zuge einer Gürtelrose – zu entwickeln. Diese Patienten empfinden jeden kleinsten Tastreiz als qualvoll.

Die Berliner Forscher gingen nach ihren bisherigen Experimenten davon aus, dass die mechanorezeptiven Zellen für die Tastempfindung zwar entscheidend sind – aber nur im Kontext ihrer Umgebung, der sogenannten Matrix und einiger darin eingelagerter Moleküle. Denn ein Druck auf oder eine Bewegung über die Haut wirkt auf beides gleichzeitig. 

Um die Geheimnisse der Tastempfindung zu lüften, haben die Wissenschaftler erstmals ein künstliches System geschaffen, das die realen Bedingungen imitiert. Es sieht aus wie ein Nagelkissen im winzigen Maßstab von einigen tausendstel Millimetern. In diesem System lassen sich ganz feine und definierte mechanische Reize an mechanosensitive Zellen – in diesem Falle aus der Maus – setzen. Dabei können die Forscher zeitgleich die elektrische Antwort der Zelle messen. 

Es zeigt sich: Bewegt man einen der „Nägel“ dieses speziellen Nagelkissen um nur zehn Millionstel Millimeter, reagieren einige der mechanosensitiven Zellen und leiten den Reiz weiter – im intakten Organismus ans Gehirn. „Verblüffend“, wie Dr. Poole findet. Andere der mechanosensitiven Zellen sind etwas unempfindlicher. Offenbar verfügen Säugetiere über Gruppen unterschiedlich empfindlicher Tastsensoren. Schmerzsensitive Zellen aus der Haut der Maus müssen hingegen 1000 Mal stärker mechanisch gereizt werden, ehe sie aktiv werden. „Das ist auch sinnvoll“, betont Studienleiter Prof. Lewin, „sonst würden wir oft unnötig Schmerz empfinden.“

In einem zweiten Schritt wollten die MDC-Forscher wissen, welche Moleküle die deutlich unterschiedliche Empfindlichkeit von tast- und schmerzsensorischen Zellen vermitteln. Resultat: Ein Stoml3 bezeichnetes Protein steuert die variierende Sensitivität auf mechanische Reize maßgeblich. „Wenn man das Gen für Stoml3 ausschaltet“, so Dr. Poole, „verschwinden die Unterschiede in der Tastempfindlichkeit.“

Und: Stoml3 moduliert nach den Erkenntnissen der MDC-Forscher die Aktivität und Empfindlichkeit von zwei sogenannten Ionenkanälen, die in äußeren Hüllen (Membranen) vieler verschiedener Zelltypen zu finden sind. Diese Ionenkanäle heißen Piezo1 und Piezo2. Nach „starken Hinweisen“ ist Piezo2 an der Tastwahrnehmung beteiligt und leitet entsprechende Signale weiter, unter anderem „stark reguliert von Stoml3“, wie Prof. Lewin weiter erklärt. 

Zu verstehen, wie Stoml3 genau funktioniert, könnte neue Wege eröffnen, um neuropathische Schmerzen zu bekämpfen. Die Forscher wollen die hypersensitiven Tastsensoren in der Haut von Patienten blockieren. „Stoml3 ist dafür ein sehr guter Angriffspunkt“, erklärt Prof. Lewin. Das potenziell Interessante an der Entwicklung: Während etwa die Betäubungsspritze beim Zahnarzt alles Empfinden im Gewebe lahm legt, würde diese neue Therapieform nur die Umwandlung des mechanischen Reizes in elektrische Erregung bremsen. „Ansonsten könnte man weiter alles fühlen“, sagt Lewin, „Wärme, Kälte und so weiter.“

*Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch

Kate Poole1,*, Regina Herget1, Liudmila Lapatsina1, Ha-Duong Ngo2 and Gary R. Lewin1,*
Affiliations:1 Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, D-13092 Berlin, Germany.
2Microsensor & Actuator Technology, Technische Universität Berlin, D-13355 Berlin, Germany.

Kontakt:
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
in der Helmholtz-Gemeinschaft
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/

Barbara Bachtler | Max-Delbrück-Centrum

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden
06.12.2016 | Universität Osnabrück

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften

Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden

06.12.2016 | Biowissenschaften Chemie