MDC-Forscher entwickeln „knock-out“-Ratten mit Hilfe springender Gene

Ratten gehören in der Forschung zu den wichtigsten Versuchstieren. Sie sind für die Erforschung einiger Erkrankungen des Menschen, wie zum Beispiel Herz-Kreislauf-Krankheiten, besser geeignet als Mäuse. Zum einen sind sie größer, zum anderen lassen sich bestimmte physiologische Fragestellungen besser an ihnen untersuchen. Hinzu kommt, dass „fast jedes getestete Medikament während der Entwicklungsphase auch an Ratten untersucht wird“, so Dr. Izsvák vom MDC.

Seit den achtziger Jahren nutzen Forscher die Methode des Gene-Targeting, um bestimmte Gene in Versuchsmäusen gezielt auszuschalten und die Veränderungen im Genom so zu verankern, dass sie von Generation zu Generation weitervererbt werden. Diese knock-out-Mäuse dienen als Modell für die Entwicklungsbiologie sowie für Erkrankungen wie beispielsweise Krebs, kardiovaskuläre oder neurodegenerative Erkrankungen. Forscher können auf diese Weise die Funktion einzelner Gene und die Ursachen von Krankheiten identifizieren. Ziel ist die Entwicklung neuer Medikamente.

„Doch es ist sehr schwierig, das Rattengenom zu verändern“, sagt Dr. Izsvák. Warum das so ist, ist nicht bekannt. Die Forscher suchten deshalb nach einer alternativen Methode, um knock-out-Ratten zu entwickeln. Dazu nutzten sie das von ihnen generierte springende Gen „Dornröschen“. Sie fügten das Transposon in das Erbgut von Spermienvorläuferzellen von Ratten ein und implantierten diese veränderten Vorläuferzellen dann anderen männlichen Ratten, wo sie sich zu Samenzellen entwickelten. Die Nachkommen dieser Ratten weisen den „knock-out“ auf.

Springende Gene haben die Eigenschaft, sich spontan und an einen zufälligen Ort in ein Genom einzuschleusen, teilweise sogar mehrfach und an unterschiedlichen Stellen. Dabei verändern sie die ursprüngliche Gensequenz, so dass das Ursprungsgen verändert oder gänzlich inaktiviert wird. Das von den Forschern benutzte Transposon „Dornröschen“ bringt sich jedoch nur ein einziges Mal in ein Genom ein, was für die Zuordnung eines inaktivierten oder veränderten Gens zu einem Krankheitsbild sehr wichtig ist. Dr. Ivics erläutert: „Mit der Transposon-Mutagenese steht eine alternative und erfolgreiche Technologie zu Verfügung, um knock-out-Ratten für die medizinische Forschung zu erhalten. Wir können nun endlich systematisch genetische Studien im Ratten-Modell durchführen. Vom Krankheitsbild ausgehend können wir nach den auslösenden Genen fahnden und Rückschlüsse auf die Krankheitsursache ziehen. Dies war bislang bei Ratten nicht möglich.“

*Generating knockout rats by transposon mutagenesis in spermatogonial stem cells
Zsuzsanna Izsvák1,2, Janine Fröhlich1, Ivana Grabundzija1, James R Shirley3, Heather M Powell3, Karen M Chapman3, Zoltán Ivics1,2 & F Kent Hamra3
Max Delbrück Center for Molecular Medicine, Berlin, Germany.
University of Debrecen, Debrecen, Hungary.
Department of Pharmacology and Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

F. Kent Hamra, University of Texas Southwestern Medical Center, Tel.: 1 (214) 645-6279, Fax: 1 (214) 645-6276, email: Kent.Hamra@UTSouthwestern.edu

Zoltan Ivics, Max Delbrück Center for Molecular Medicine, Tel: 49 (30) 9406 2546, Fax: 49 (30) 9406 2547, email: zivics@mdc-berlin.de

Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 – 38 96
Fax: +49 (0) 30 94 06 – 38 33
e-mail: presse@mdc-berlin.de
Weitere Informationen:
Nature Medicine, Vol. 16, Nr. 3, March 2010, pp. 254-257

Media Contact

Barbara Bachtler Max-Delbrück-Centrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer