Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MDC-Forscher entschlüsseln regulatorisches Netzwerk in der Niere

19.03.2015

Die Niere filtert das Blut und bildet den Harn. Dabei wird der Urin in einem komplexen System von Nierenkanälchen transportiert und in seiner Zusammensetzung reguliert.

Wie Teile dieser Kanälchen sich während der Entwicklung aufweiten und gleichzeitig eine Barriere gegenüber angrenzenden Strukturen ausbilden, haben jetzt die Doktorandin Annekatrin Aue, Dr. med. Christian Hinze und Prof. Dr. med. Kai Schmidt-Ott vom Max-Delbrück-Centrum für Molekulare Medizin (MDC) herausgefunden.


Niere eines Mausembryos. Die Zellkerne sind grün und der Transkriptionsfaktor Grhl2 ist rot angefärbt. (Photo: Katharina Walentin/ Copyright: MDC)

Der Prozess wird maßgeblich durch einen neuartigen molekularen Signalweg in den Epithelzellen der Nierenkanälchen selbst gesteuert (Journal of the American Society of Nephrology, doi: 10.1681/ASN.2014080759)1.

Im Mittelpunkt ihrer Untersuchungen steht der Transkriptionsfaktor grainyhead-like 2 (GRHL2). Er steuert die Entstehung und den Zusammenhalt der Zellen, die die inneren und äußeren Körperflächen auskleiden (Epithelzellen), wie die Forschungsgruppe von Prof. Schmidt-Ott vor wenigen Jahren herausgefunden hatte. Jetzt haben die Forscher gezeigt, dass dieser Genregulator auch in den Nieren eine Rolle spielt.

Die Untersuchungen, die von der Deutschen Forschungsgemeinschaft (DFG) und der Stiftung Urologische Forschung gefördert wurden, ergaben, dass GRHL2 vor allem in den Sammelrohren der Niere und in deren embryologischen Vorläufern, den Ur-Nierengängen und der Ureterknospe (Harnleiterknospe), gebildet wird. Die Sammelrohre bilden besonders dichte, undurchlässige Abschnitte des Nephrons.

Das Nephron ist das „Herzstück“ der Nieren. Es filtert die Schadstoffe aus rund 1 700 Litern Blut pro Tag heraus. Dabei werden zunächst zirka 180 Liter Primärharn gebildet, am Ende jedoch nur etwa 1-2 Liter ausgeschieden. Die Sammelrohre gewährleisten die Feineinstellung der Harnzusammensetzung.

In Zellkulturen von Sammelrohrzellen und in Ur-Nierengängen von Mausembryonen schalteten die Forscher den Transkriptionsfaktor aus, um zu sehen, welche Funktion er für die Nieren hat. Das Ergebnis: Fehlt er, verändert sich die Barrierefunktion der auskleidenden Epithelzellen und es verringert sich die Weite des Hohlraums (Lumens) der Nierenkanälchen.

Doch arbeitet der Transkriptionsfaktor GRHL2 nicht alleine, wie die MDC-Forscher weiter herausfanden. Er tut sich zusammen mit einem weiteren Transkriptionsfaktor, ovo-like 2 (OVOL2), den er aber auch reguliert.

Dieses Tandem steuert sowohl ein Gen, das wichtig für die Abdichtung von Epithelzellverbänden ist (Claudin 4) und damit eine undurchlässige Barriere gewährleistet, als auch ein weiteres Gen (Rab 25), welches das innere Milieu des Lumens steuert. Claudin 4 und Rab 25 steuern gemeinsam die Aufweitung des Lumens. Damit haben Annekatrin Aue, Dr. Hinze und Prof. Schmidt-Ott einen neuen Signalweg in der Niere entdeckt.

Die Steuerung von Barrierefunktion und Lumenbildung in den Nierenkanälchen ist wichtig für die normale Nierenentwicklung und für die Nierenfunktion, spielt aber auch eine Rolle für die Entstehung von Nierenzysten, bei denen sich die Hohlräume der Nierenkanälchen krankhaft aufweiten und damit auch das umliegende Nierengewebe schädigen. Inwieweit die Erkenntnisse der MDC-Forscher klinisch relevant sind, müssen weitere Forschungen zeigen.

1A Grainyhead-Like 2/Ovo-Like 2 Pathway Regulates Renal Epithelial Barrier Function and Lumen Expansion
Annekatrin Aue*†, Christian Hinze*‡, Katharina Walentin*, Janett Ruffert*, Yesim Yurtdas*§‖, Max Werth*, Wei Chen*, Anja Rabien§‖, Ergin Kilic¶, Jörg-Dieter Schulzke**, Michael Schumann** and Kai M. Schmidt-Ott*†‡
*Max Delbrueck Center for Molecular Medicine, Berlin, Germany
†Experimental and Clinical Research Center, and
Departments of ‡Nephrology, §Urology,
¶Pathology, and
**Gastroenterology, Charité Medical University, Berlin, Germany; and
‖Berlin Institute of Urologic Research, Berlin, Germany
#Corresponding author: Prof. Dr. Kai M. Schmidt-Ott, MDC, email: kai.schmidt-ott@charite.de

Eine mikroskopische Aufnahme der Niere können Sie sich im Internet herunterladen unter:
https://www.mdc-berlin.de/44046866/de/news/2015

Kontakt:
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
in der Helmholtz-Gemeinschaft
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/de

Weitere Informationen:

https://www.mdc-berlin.de/44319706/de/news/2015/20150319-mdc-forscher_entschl_ss...

Barbara Bachtler | Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften