Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Maximale chemische Vielfalt der Natur erstmals im Labor bestätigt

03.11.2008
Wissenschaftlern des Helmholtz Zentrums München ist es erstmalig gelungen, die maximal mögliche Anzahl chemischer Zusammensetzungen aus Kohlenstoff, Sauerstoff und Wasserstoff in natürlicher organischer Materie nachzuweisen. Die Erkenntnisse eröffnen völlig neue Einblicke in die bislang weitgehend unverstandene Rolle dieser weit verbreiteten Materie im globalen Kohlenstoffkreislauf und damit für das Weltklima.

In der Natur kommen sie in enormer Vielfalt vor - Zehntausende verschiedener chemischer Zusammensetzungen aus Kohlenstoff, Sauerstoff und Wasserstoff. Ihre maximal denkbare Anzahl lässt sich mathematisch errechnen.

"Ob diese rein rechnerische Zahl in der Natur allerdings überhaupt vorkommt ", so Dr. Norbert Hertkorn vom Institut für Ökologische Chemie am Helmholtz Zentrum München, "wusste bisher niemand, da die Analytik solchen Dimensionen nicht gewachsen war."

Mit einem neuen ultrahochauflösenden Massenspektrometer ist es Helmholtz-Wissenschaftlern zusammen mit Kollegen vom Alfred-Wegener-Institut und dem Georgia Institute of Technology nun erstmalig gelungen, die bislang theoretische Maximalzahl an chemischen Zusammensetzungen in natürlicher organischer Materie (NOM) nachzuweisen. Als Untersuchungsmaterial hatten die Wissenschaftler eine NOM-Fraktion gewählt, die in Fachkreisen als Standard-Referenzverbindung verbreitet und anerkannt ist, die SuwFA, eine Fulvinsäure-Fraktion aus dem Suwannee River im amerikanischen Georgia.

"Unser FTICR-Massenspektrometer konnte in der Probe tatsächlich alle theoretisch denkbaren C-H-O-Kombinationen auflösen", so Hertkorn. "Somit haben wir den Nachweis erbracht, dass die Natur in NOM tatsächlich alle mathematisch möglichen chemischen Zusammensetzungen auch realisiert hat".

Über Verhalten und Bedeutung von NOM in der Umwelt wusste man bislang nur wenig - dabei kommt es in erheblichen Mengen in nahezu allen Bereichen der Umwelt vor - in Böden, Sediment, Süß- und Salzwasser ebenso wie in der Luft. Es entsteht aus der Zersetzung organischer Substanz und bildet damit das Bindeglied zwischen belebter und unbelebter Umwelt.

Das am Helmholtz Zentrum München neu angewandte hochauflösende Analyseverfahren ermöglicht nun erheblich verbesserte Einblicke in die Strukturchemie dieses ubiquitären natürlichen Materials. Die Erkenntnisse bilden eine wichtige Grundlage, um die in der Vergangenheit schwer einzuschätzende Bedeutung von NOM für den globalen Kohlenstoffkreislauf und seine Rolle im Klimasystem neu einordnen zu können.

Originalpublikation

Hertkorn, N. et al: Natural Organic Matter and the Event Horizon of Mass Spectrometry. - Analytical Chemistry online (DOI: 10.1021/ac800464g) http://pubs.acs.org/cgi-bin/abstract.cgi/ancham/asap/abs/ac800464g.html

Pressekontakt

Heinz-Jörg Haury
Kommunikation - Helmholtz Zentrum München
Ingolstädter Landstraße 1
85764 Neuherberg
Tel.: 089 3187 2460
Fax: 089 3187 3324
E-Mail: presse@helmholtz-muenchen.de

Michael van den Heuvel | Helmholtz-Gemeinschaft
Weitere Informationen:
http://www.helmholtz-muenchen.de
http://pubs.acs.org/cgi-bin/abstract.cgi/ancham/asap/abs/ac800464g.html
http://www.helmholtz-muenchen.de/presse/pressemitteilungen/pressemitteilungen-2008/pressemitteilung-2008-detail/article/11284/44/index.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Demenz: Neue Substanz verbessert Gehirnfunktion
28.07.2017 | Technische Universität München

nachricht Mit einem Flow-Reaktor umweltschonend Wirkstoffe erzeugen
28.07.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise