Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Max-Planck-Forscher enträtseln molekularen Shuttleservice

19.11.2014

Es sind kleine, haarige Strukturen und sie sitzen nahezu auf all unseren Zellen. Die Rede ist von sogenannten Zilien, die für eine Vielzahl von Körperfunktionen verantwortlich sind.

Patienten, deren Zilien unvollständig sind, leiden unter anderem an Taubheit und ihre Nieren sind nicht mehr in der Lage, Blut zu reinigen. Diese Krankheit nennt sich Bardet-Biedl Syndrom (BBS).


Nachdem das BBSome seine Fracht aufgenommen hat, bindet ARL6 (grün) an das Protein BBS1 (blau) und geleitet das BBSome in Richtung Zilium.

Illustration: André Mourão & Monika Krause © Copyright: MPI für Biochemie

Wissenschaftler am Max-Planck-Institut (MPI) für Biochemie in Martinsried bei München konnten jetzt einen grundlegenden Mechanismus dieser Krankheit aufklären und zeigen, dass dabei die für den Aufbau benötigten Bausteine nicht zu den Zilien transportiert werden.

Zilien sind filigrane, haarähnliche Strukturen, die auf fast allen Zellen von Mensch und (Wirbel-) Tier vorkommen. Dort verrichten sie eine Fülle wichtiger Aufgaben: sie verarbeiten beispielsweise akustische Signale in unseren Ohren sowie optische Signale in unseren Augen und ermöglichen den Spermien die Fortbewegung. Dies lässt erahnen, wie wichtig diese Strukturen sind.

Es verdeutlicht aber auch, wie stark Krankheiten, die die Zilien betreffen (sogenannte Ziliopathien), die Patienten beeinträchtigen können. Eine solche Krankheit ist das Bardet-Biedl Syndrom, abgekürzt BBS. Betroffene Patienten leiden oft unter Blind- oder Taubheit, klagen über Nierenversagen oder sind krankhaft übergewichtig.

Mittlerweile ist bekannt, dass die Krankheit durch Veränderungen einer Gruppe von Proteinen, BBS1 bis BBS19, zustande kommt. Diese Proteine bilden in der gesunden Zelle eine Art Shuttle - das BBSome. Dieses transportiert neue Proteinbausteine zu den Zilien. Ist dieser Transport unterbrochen, sind die Zilien nicht mehr funktionsfähig. Wie der Transport der Fracht hin zu den Zilien im Detail funktioniert, haben Forscher um Esben Lorentzen am MPI für Biochemie nun ergründet.

In der aktuellen Studie fanden die Forscher heraus, dass zwei bestimmte Proteine miteinander wechselwirken, um die neuen Bausteine sicher zu den Zilien zu bringen. Hat das BBSome-Shuttle seine Fracht im Inneren der Zelle aufgenommen, braucht es eine Art Lotsen, der es zur Oberfläche der Zelle bringt - dorthin, wo die Zilien sitzen.

Dieser Lotse ist das Molekül ARL6. Es bindet an einer bestimmten Stelle an das BBSome, am Protein BBS1, und geleitet es in Richtung Oberfläche. Nach den Erkenntnissen der Forscher ist dieser Mechanismus vom Mensch bis hin zur Grünalge in seinem Grundprinzip identisch. In der Regel ein verlässlicher Hinweis, dass eine Eigenschaft elementar wichtig für das Überleben ist.

Ein molekulares Shuttle auf Abwegen

Wie entscheidend dieser Mechanismus für die Gesundheit des Menschen ist, erläutert Lorentzen an einem Beispiel: „Interessanter Weise zeigen etwa 30 Prozent aller BBS Patienten eine bisher unverstandene Mutation an einer bestimmten Stelle von BBS1. Wir konnten zeigen, dass diese Veränderung die Bindestelle zwischen ARL6 und BBS1 betrifft und dazu führt, dass die beiden Moleküle nicht mehr miteinander interagieren.“

Die Forscher vermuten, dass in diesem Fall das BBSome seinen Lotsen nicht mehr finden könne und den Zilien dadurch wichtige Bausteine fehlen. In der Folge verlieren die Zilien ihre Funktion. Künftig wollen die Wissenschaftler klären, ob weitere Proteine an dem Prozess beteiligt sind und welche Rolle sie dabei spielen.
[HS]

Originalpublikation:
A. Mourão, A.R. Nager, M.V. Nachury and E. Lorentzen: Structural basis for membrane targeting of the BBSome by ARL6. NSMB, November 17, 2014.
DOI: 10.1038/nsmb.2920

Kontakt:
Dr. Esben Lorentzen
Intraflagellärer Transport
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: lorentze@biochem.mpg.de
  www.biochem.mpg.de/lorentzen

Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: konschak@biochem.mpg.de
Tel. +49 89 8578-2824
www.biochem.mpg.de


Weitere Informationen:

http://www.biochem.mpg.de/lorentzen  - Forschungsgruppe "Intraflagellärer Transport" (Esben Lorentzen)
http://www.biochem.mpg.de/news  - weitere Pressemitteilung des MPI für Biochemie

Anja Konschak | Max-Planck-Institut für Biochemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise