Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mature T cells can switch function to better tackle infection

21.01.2013
Helper cells of the immune system can switch to become killer cells in the gut

The fate of mature T lymphocytes might be a lot more flexible than previously thought. New research from the RIKEN Center for Allergy and Immunology (RCAI) in Japan and La Jolla Institute for Allergy and Immunology (LIAI) in the USA shows for the first time that mature CD4+ helper T lymphocytes can be re-programed to become killer-like CD8+ T lymphocytes and gain killing functions.

The findings are reported today in the journal Nature Immunology, by a team of researchers led by Ichiro Taniuchi from RIKEN and Hilde Cheroutre from La Jolla. The team show using transgenic mice that mature CD4+ helper T lymphocytes that have lost the transcription factor ThPOK express genes specific to CD8+ killer T lymphocytes upon exposure to a specific environmental stimulation such as the gut. This turns them into killer cells that might act to control infection.

CD4+ helper T lymphocytes and CD8+ killer T lymphocytes are important players in the body's defense mechanism against infection. CD4+ helper T lymphocytes normally only assist other cells of the immune system during an infection, whereas CD8+ killer T cells are the main actors in the elimination of infected cells.

Both types of cells are generated in the thymus, where their early precursors develop first into cells bearing both CD4 and CD8 markers. These CD4+ CD8+ cells then differentiate into cells bearing either the CD4 or CD8 marker and take on either a helper (CD4+) or killer (CD8+) fate.

The transcription factor ThPOK is known to play a crucial role in the fate determination of T lymphocytes in the thymus. It represses genes specific to CD8+ cells in precursors of helper T cells and prevents these cells from differentiating into CD8+ killer cells. The expression of ThPOK continues in mature CD4+ helper T cells and is repressed in mature CD8+ cells.

In the study, Taniuchi, Cheroutre and colleagues show that upon deactivation of ThPOK, mature CD4+ T cells revert back to bearing both CD4 and CD8 markers in the mouse intestine. By analyzing RNA extracted from ThPOK-negative CD4+ CD8+ cells, the researchers demonstrate that the cells express various CD8+ cell-specific genes encoding for cytolitic proteins and that they have effectively differentiated into CD8+ killer T cells.

The authors conclude: "The unexpected plasticity of mature CD4+ T cells to differentiate into CD8+ cytolitic cells expands the functional capabilities of CD4+ T cells. It is possible that CD4+ T cells are also involved in direct protective functions and provide the immune system with an alternative protective mechanism."

According to them, these cells may be recruited to help in the immune response at interfaces such as the skin or mucosae, where the rapid elimination of infected cells is crucial.

Reference

Taniuchi, I. Cheroutre, H. et al. "Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II–restricted cytotoxic T lymphocytes." Nature Immunology, 2013, DOI: 10.1038/ni.2523

About RIKEN

RIKEN is Japan's flagship research institute devoted to basic and applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN's advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world.

Website: http://www.riken.jp/
Find us on Twitter at: @rikenresearch
For more information about the RIKEN Research Center for Allergy and Immunology please visit: http://www.rcai.riken.jp/english/

Juliette Savin | EurekAlert!
Further information:
http://www.riken.jp

More articles from Life Sciences:

nachricht Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria
29.05.2015 | Carnegie Institution

nachricht Scientists use unmanned aerial vehicle to study gray whales from above
29.05.2015 | NOAA National Marine Fisheries Service

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Galapagos-Vulkanismus: Überraschend explosiv

Internationales Vulkanologen-Team präsentiert neue Erkenntnisse zur Eruptions-Geschichte

Vor 8 bis 16 Millionen Jahren gab es im Gebiet der heutigen Galapagos-Inseln einen hochexplosiven Vulkanismus. Das zeigt erstmals die Auswertung von...

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Wie Solarzellen helfen, Knochenbrüche zu finden

FAU-Forscher verwenden neues Material für Röntgendetektoren

Nicht um Sonnenlicht geht es ihnen, sondern um Röntgenstrahlen: Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben zusammen mit...

Im Focus: Festkörper-Photonik ermöglicht extrem kurzwellige UV-Strahlung

Mit ultrakurzen Laserpulsen haben Wissenschaftler aus dem Labor für Attosekundenphysik in dünnen dielektrischen Schichten EUV-Strahlung erzeugt und die zugrunde liegenden Mechanismen untersucht.

Das Jahr 1961, die Erfindung des Lasers lag erst kurz zurück, markierte den Beginn der nichtlinearen Optik und Photonik. Denn erstmals war es Wissenschaftlern...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikhael Subotzky und Patrick Waterhouse erhalten den Deutsche Börse Photography Prize 2015

29.05.2015 | Förderungen Preise

Potenzial aller Kinder erkennen

29.05.2015 | Veranstaltungsnachrichten

HDT - Sommerakademie 2015 für Entwickler und Ingenieure

29.05.2015 | Seminare Workshops