Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Mathematik einzigartige Zellen aufspüren - Statistische Methoden verbessern biologische Einzelzell-Analyse

23.01.2014
Stammzellen verwandeln sich in Herzzellen, Hautzellen verwandeln sich in Krebszellen, selbst Zellen einer Gewebeart unterscheiden sich geringfügig voneinander.

Ein wichtiges Werkzeug dazu, solche Heterogenitäten zu verstehen, sind Einzelzell-Analysen. Diese jedoch sind immer noch aufwändig und teuer. Zudem verursacht die Handhabung der Einzelzellen eine erhebliche Ungenauigkeit der Messwerte.


Fluoreszenz-in-situ-Hybridisierung zeigt mRNA-Aktivität. Blau: niedrige, rot: hohe Aktivität
Bild: S. S. Bajikar / University of Virginia, Charlottesville (USA)

Wissenschaftler der Technischen Universität München (TUM), des Helmholtz Zentrums München und der Universität Virginia (USA) haben nun einen Weg gefunden, wie sich die Analysen durch mathematische Methoden vereinfachen und verbessern lassen.

Jede unserer Körperzellen ist einzigartig. Selbst Zellen einer Gewebeart, die unter dem Mikroskop völlig gleich aussehen, unterscheiden sich geringfügig voneinander. Um zu verstehen, wie sich aus einer Stammzelle eine Herzzelle entwickeln kann, warum die eine Beta-Zelle Insulin produziert und die andere nicht und warum eine normale Gewebezelle plötzlich zu einer Krebszelle wird, untersuchen Wissenschaftler seit einigen Jahren gezielt die Aktivitäten der Ribonucleinsäuren, der RNA.

Permanent werden Stoffe auf- und abgebaut. Ständig lesen RNA-Moleküle Baupläne für Eiweiße aus der Erbsubstanz ab und lassen sie von anderen Eiweißen produzieren. Inzwischen hat die Wissenschaft die Methoden so verfeinert, dass es möglich ist, alle in einer einzigen Zelle zu einem bestimmten Zeitpunkt aktiven RNA-Moleküle zu erfassen.

Ende Dezember 2013 wurde die Einzelzell-Sequenzierung vom Fachblatt Nature Methods zur Methode des Jahres 2013 erklärt. Doch die Untersuchung einzelner Zellen ist extrem aufwändig und die Handhabung der Zellen verursacht Fehler und Ungenauigkeiten, die ein erhebliches statistisches Rauschen zur Folge haben. Vor allem schwächere Unterschiede in der Genregulierung gehen darin unter oder werden gar nicht erst sichtbar.

Einfacher und genauer dank Statistik

Wissenschaftler unter der Leitung von Professor Fabian Theis, Inhaber des Lehrstuhls für Mathematische Modelle biologischer Systeme der TU München und Leiter des Instituts für Computational Biology am Helmholtz Zentrum München, haben nun einen Weg gefunden, wie sie mit Methoden der mathematischen Statistik die Einzelzell-Analyse wesentlich verbessern können.

Statt nur jeweils einer Zelle nahmen sie zwischen 16 und 80 Proben mit jeweils zehn Zellen. „Eine Menge von zehn Zellen ist wesentlich leichter zu handhaben“, sagt Professor Theis. „Bei der zehnfachen Menge an Zellmaterial werden die Umgebungseinflüsse deutlich zurück gedrängt.“ Allerdings sind die Zellen mit unterschiedlichen Eigenschaften dann zufällig über die Proben verteilt. Daher entwickelte Theis´ Mitarbeiterin Christiane Fuchs statistische Methoden, um die Einzelzell-Eigenschaften dennoch zu identifizieren.

Kombination von Modell und Experiment

Auf der Basis bekannter biologischer Daten modellierten Theis und Fuchs die Verteilung für den Fall von Genen, die sich in zwei definierten regulatorischen Zuständen befinden können. Zusammen mit den Biologen Kevin Janes und Sameer Bajikar von der Universität Virginia in Charlottesville (USA) konnten sie experimentell belegen, dass mit Hilfe der statistischen Methoden aus den Messergebnissen der zehn Zellen enthaltenden Proben genauere Ergebnisse errechnet werden können als mit der Analyse der gleichen Anzahl von Einzelzellproben.

In vielen Fällen werden durch einen Faktor gleich mehrere Genreaktionen angestoßen. Auch auf solche Fälle ließ sich das statistische Verfahren anwenden. Fluoreszierende Marker zeigen die Genaktivitäten, und man erhält so ein Mosaik aus dem sich wiederum ablesen lässt, ob verschiedene Zellen unterschiedlich auf den Faktor reagieren.

Die Methode ist so empfindlich, dass sie selbst eine Abweichung unter 40 sonst gleichen Zellen noch zeigt. Dass diese Abweichung tatsächlich ein Effekt ist und nicht ein zufälliger Ausreißer, konnte experimentell belegt werden.

Die Arbeit wurde unterstützt aus Mitteln der American Cancer Society, des National Institutes of Health, der Deutschen Forschungsgemeinschaft, des Deutschen Akademischen Austauschdienstes, des Pew Scholars Program in the Biomedical Sciences, der David and Lucile Packard Foundation, der National Science Foundation sowie des European Research Council.

Publikation:

Parameterizing cell-to-cell regulatory heterogeneities via stochastic transcriptional profiles
Sameer S. Bajikar, Christiane Fuchs, Andreas Roller, Fabian J. Theis, and Kevin A. Janes

PNAS, Early Edition, 21 Januar 2014, Doi: 10.1073/pnas.1311647111

Kontakt

Prof. Dr. Fabian J. Theis
Technische Universität München
Lehrstuhl für Mathematische Modelle biologischer Systeme
Boltzmannstr. 3, 85748 Garching, Germany
Tel.: +49 89 289 18386 – E-Mail: theis@mytum.de
Helmholtz-Zentrum München
Institut für Computational Biology
Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
Tel.: +49 89 3187 2211 - icb.office@helmholtz-muenchen.de
Weitere Informationen:
http://www.pnas.org/content/early/2014/01/17/1311647111
http://www.helmholtz-muenchen.de/icb

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.helmholtz-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie