Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Mathematik einzigartige Zellen aufspüren - Statistische Methoden verbessern biologische Einzelzell-Analyse

23.01.2014
Stammzellen verwandeln sich in Herzzellen, Hautzellen verwandeln sich in Krebszellen, selbst Zellen einer Gewebeart unterscheiden sich geringfügig voneinander.

Ein wichtiges Werkzeug dazu, solche Heterogenitäten zu verstehen, sind Einzelzell-Analysen. Diese jedoch sind immer noch aufwändig und teuer. Zudem verursacht die Handhabung der Einzelzellen eine erhebliche Ungenauigkeit der Messwerte.


Fluoreszenz-in-situ-Hybridisierung zeigt mRNA-Aktivität. Blau: niedrige, rot: hohe Aktivität
Bild: S. S. Bajikar / University of Virginia, Charlottesville (USA)

Wissenschaftler der Technischen Universität München (TUM), des Helmholtz Zentrums München und der Universität Virginia (USA) haben nun einen Weg gefunden, wie sich die Analysen durch mathematische Methoden vereinfachen und verbessern lassen.

Jede unserer Körperzellen ist einzigartig. Selbst Zellen einer Gewebeart, die unter dem Mikroskop völlig gleich aussehen, unterscheiden sich geringfügig voneinander. Um zu verstehen, wie sich aus einer Stammzelle eine Herzzelle entwickeln kann, warum die eine Beta-Zelle Insulin produziert und die andere nicht und warum eine normale Gewebezelle plötzlich zu einer Krebszelle wird, untersuchen Wissenschaftler seit einigen Jahren gezielt die Aktivitäten der Ribonucleinsäuren, der RNA.

Permanent werden Stoffe auf- und abgebaut. Ständig lesen RNA-Moleküle Baupläne für Eiweiße aus der Erbsubstanz ab und lassen sie von anderen Eiweißen produzieren. Inzwischen hat die Wissenschaft die Methoden so verfeinert, dass es möglich ist, alle in einer einzigen Zelle zu einem bestimmten Zeitpunkt aktiven RNA-Moleküle zu erfassen.

Ende Dezember 2013 wurde die Einzelzell-Sequenzierung vom Fachblatt Nature Methods zur Methode des Jahres 2013 erklärt. Doch die Untersuchung einzelner Zellen ist extrem aufwändig und die Handhabung der Zellen verursacht Fehler und Ungenauigkeiten, die ein erhebliches statistisches Rauschen zur Folge haben. Vor allem schwächere Unterschiede in der Genregulierung gehen darin unter oder werden gar nicht erst sichtbar.

Einfacher und genauer dank Statistik

Wissenschaftler unter der Leitung von Professor Fabian Theis, Inhaber des Lehrstuhls für Mathematische Modelle biologischer Systeme der TU München und Leiter des Instituts für Computational Biology am Helmholtz Zentrum München, haben nun einen Weg gefunden, wie sie mit Methoden der mathematischen Statistik die Einzelzell-Analyse wesentlich verbessern können.

Statt nur jeweils einer Zelle nahmen sie zwischen 16 und 80 Proben mit jeweils zehn Zellen. „Eine Menge von zehn Zellen ist wesentlich leichter zu handhaben“, sagt Professor Theis. „Bei der zehnfachen Menge an Zellmaterial werden die Umgebungseinflüsse deutlich zurück gedrängt.“ Allerdings sind die Zellen mit unterschiedlichen Eigenschaften dann zufällig über die Proben verteilt. Daher entwickelte Theis´ Mitarbeiterin Christiane Fuchs statistische Methoden, um die Einzelzell-Eigenschaften dennoch zu identifizieren.

Kombination von Modell und Experiment

Auf der Basis bekannter biologischer Daten modellierten Theis und Fuchs die Verteilung für den Fall von Genen, die sich in zwei definierten regulatorischen Zuständen befinden können. Zusammen mit den Biologen Kevin Janes und Sameer Bajikar von der Universität Virginia in Charlottesville (USA) konnten sie experimentell belegen, dass mit Hilfe der statistischen Methoden aus den Messergebnissen der zehn Zellen enthaltenden Proben genauere Ergebnisse errechnet werden können als mit der Analyse der gleichen Anzahl von Einzelzellproben.

In vielen Fällen werden durch einen Faktor gleich mehrere Genreaktionen angestoßen. Auch auf solche Fälle ließ sich das statistische Verfahren anwenden. Fluoreszierende Marker zeigen die Genaktivitäten, und man erhält so ein Mosaik aus dem sich wiederum ablesen lässt, ob verschiedene Zellen unterschiedlich auf den Faktor reagieren.

Die Methode ist so empfindlich, dass sie selbst eine Abweichung unter 40 sonst gleichen Zellen noch zeigt. Dass diese Abweichung tatsächlich ein Effekt ist und nicht ein zufälliger Ausreißer, konnte experimentell belegt werden.

Die Arbeit wurde unterstützt aus Mitteln der American Cancer Society, des National Institutes of Health, der Deutschen Forschungsgemeinschaft, des Deutschen Akademischen Austauschdienstes, des Pew Scholars Program in the Biomedical Sciences, der David and Lucile Packard Foundation, der National Science Foundation sowie des European Research Council.

Publikation:

Parameterizing cell-to-cell regulatory heterogeneities via stochastic transcriptional profiles
Sameer S. Bajikar, Christiane Fuchs, Andreas Roller, Fabian J. Theis, and Kevin A. Janes

PNAS, Early Edition, 21 Januar 2014, Doi: 10.1073/pnas.1311647111

Kontakt

Prof. Dr. Fabian J. Theis
Technische Universität München
Lehrstuhl für Mathematische Modelle biologischer Systeme
Boltzmannstr. 3, 85748 Garching, Germany
Tel.: +49 89 289 18386 – E-Mail: theis@mytum.de
Helmholtz-Zentrum München
Institut für Computational Biology
Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
Tel.: +49 89 3187 2211 - icb.office@helmholtz-muenchen.de
Weitere Informationen:
http://www.pnas.org/content/early/2014/01/17/1311647111
http://www.helmholtz-muenchen.de/icb

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.helmholtz-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie