Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Materialwissenschaft: Richtungsweisende Biominerale

17.10.2013
Wie Bakterien ihre magnetische Navigationshilfe erzeugen, könnte Materialwissenschaftler inspirieren

Als Menschen im 12. Jahrhundert anfingen, anhand von Kompassnadeln die richtigen Routen auf dem Meer zu suchen, war die magnetische Navigationshilfe bei anderen Lebewesen schon längst gängig.


Ein Bakterium formt seine Kompass-Nadel: Schon zehn Minuten, nachdem der Einzeller in Kontakt mit einer eisenhaltigen Nährlösung gekommen ist, treten die entstehenden Magnetit-Partikel in der Aufnahme eines Transmissionselektronenmikroskops (links) deutlich als dunkelgraue Strukturen hervor. Eine Elementanalyse für den markierten Ausschnitt zeigt, dass dabei gleichzeitig Eisen (gelb) und Phosphor (blau) angelagert werden (rechts).

© MPI für Kolloid- und Grenzflächenforschung/ J. Baumgartner

Zugvögel orientieren sich am Magnetfeld der Erde, aber auch manche Einzeller, so genannte magnetotaktische Bakterien. Als inneren Kompass tragen sie eine Kette winziger Nanopartikel des magnetischen Minerals Magnetit in ihrem Inneren.

Details, wie die Mikroorganismen das Eisenoxidmineral Magnetit bilden, präsentieren Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam-Golm gemeinsam mit Kollegen aus Frankreich und den USA in zwei aktuellen Veröffentlichungen. Demnach erzeugen die Bakterien Magnetit-Nanopartikel über eine ähnliche Zwischenstufe wie höhere Lebewesen, anders als diese nutzen sie aber das Protein MamP, um die Oxidation des Eisens zu kontrollieren.

Wenn magnetotaktische Bakterien ihrem inneren Kompass folgen, suchen sie nicht die richtige Route zwischen Nord und Süd, sondern einen Weg in den Grund von Seen, Flüssen oder anderen Gewässern. Denn einige Millimeter unterhalb der Grenze zwischen Wasser und Sediment finden die Mikroorganismen normalerweise die idealen sauerstoffarmen Bedingungen für ihre Ernährung. Dorthin folgen sie den Linien des Erdmagnetfeldes, die fern vom Äquator nicht parallel zur Erdoberfläche laufen, sondern sich schräg nach unten neigen. Dabei richten sich die Bakterien am Magnetfeld mithilfe von Magnetosomen aus: von Membranen umschlossenen Nanopartikeln aus Magnetit, die sich entlang ihrer Zellachse kettenförmig aufreihen.

Wie sich die winzigen eisenhaltigen Teilchen bilden, haben nun zwei internationale Teams, an denen jeweils auch Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung beteiligt, näher untersucht. „Magnetotaktische Bakterien eignen sich hervorragend, um die magnetische Biomineralisation zu studieren“, sagt Damien Faivre, Leiter der Arbeitsgruppe molekulare Biomimetik und magnetische Biomineralisation am Potsdamer Max-Planck-Institut. „Denn ihre Genome sind bereits entziffert, und es gibt genügend Untersuchungsmethoden, wie man diese genetisch verändern kann.“

Bakterien kontrollieren die Biomineralisation vorbildhaft für die Materialwissenschaft

Generell bestehen Magnetitkristalle aus dem Eisenoxid Fe3O4, das zwei unterschiedlich stark oxidierte Varianten des Eisens enthält. Die Gestalt der Nanopartikel und mithin der Magnetosomen variiert allerdings zwischen verschiedenen Bakterienarten, eine Spezies bildet sie jedoch mit hoher Präzision immer in der gleichen Form und Größe. Die Mikroben können die Biosynthese der Nanopartikel also offenbar auf einzigartige Weise kontrollieren, was nicht nur das Interesse von Biologen geweckt hat. „Wenn wir die zugrunde liegenden Prinzipien besser verstehen, eröffnen sich in Zukunft sicherlich neue Ansätze und Methoden, um Magnetit-Nanopartikel technisch herzustellen“, so Damien Faivre. „Könnten Materialwissenschaftler die Eigenschaften synthetischer Magnetit-Teilchen genauso kontrollieren wie die Bakterien, wären dafür auch neue Anwendungen denkbar, wie in Kontrastmitteln für die Magnetresonanztomografie.

In einer der jetzt veröffentlichten Studien charakterisierten die Wissenschaftler mit Hilfe von Röntgenabsorptionsspektroskopie bei sehr tiefen Temperaturen und Transmissionselektronenmikroskopie den chemischen Prozess der Biomineralisation, wenn magnetotaktische Bakterien Magnetit bilden. Demnach erzeugen die Einzeller zunächst ein völlig ungeordnetes Eisenhydroxid, das reich an Phosphat ist. Dieses Material ähnelt Ferritinen, also Proteinkomplexen, die in Tieren, Pflanzen und Bakterien vorkommen und typischerweise Eisen speichern. Über Nanopartikel aus Eisenoxyhydroxide entstehen dann schließlich die Magnetit-Teilchen für die Magnetosomen ausgebildet.

„Das erstaunliche daran ist, das diese Transformation der synthetischen Erzeugung von Magnetit sehr nahe kommt und ähnlich wie die Mineralisation in höheren Organismen funktioniert“ sagt Jens Baumgartner, einer der beteiligten Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung. So bilden wahrscheinlich auch Tauben das Mineral Magnetit mit dem gleichen Mechanismus, um es als Navigationshilfe in ihrem Schnabel einzulagern. Da dabei Eisenphosphate anwesend sind, liegt nahe, dass die Biomineralisation von Magnetit in Bakterien und höheren Lebewesen ähnlich abläuft, obwohl die Lebewesen entwicklungsgeschichtlich sehr weit voneinander getrennt sind.

Über das Protein MamP kontrollieren Bakterien die Oxidation des Eisens

Doch nicht nur Form und Größe der Magnetit-Partikel können die Bakterien genau kontrollieren, sondern auch die chemische Zusammensetzung der Teilchen. Sie schaffen exakt die chemischen Bedingungen, damit die beiden unterschiedlich stark oxidierten Eisenionen, nämlich zweifach geladenes Eisen-II (Fe(II)) und dreifach geladenes Eisen-III (Fe(III)), in genau dem richtigen Verhältnis entstehen. Wie die zweite Studie, an der die Potsdamer Wissenschaftler beteiligt waren, nun zeigt, übernimmt ein Protein namens MamP dabei die entscheidende Rolle. Dieses Protein wurde ausschließlich in magnetotaktischen Bakterien gefunden und ähnelt Cytochromen.

Cytochrome übertragen in Redoxreaktionen bei der Zellatmung und anderen biochemischen Vorgängen Elektronen. Nun stellten die Forscher fest, dass MamP Fe(II) zu Fe(III) oxidiert. Die Bakterien brauchen also nur Eisen-II, um die Magnetitpartikel zu erzeugen. Unter anderem indem die Wissenschaftler das Protein genetisch veränderten, identifizierten sie auch die Strukturelemente, die für die Eisenoxidation wichtig sind. Diese Untereinheiten des Proteins werden Magnetochrome genannte.

„Bisher war offen, ob die Bakterien von Eisen-II oder Eisen-III ausgehen, um Magnetit zu bilden“, erklärt Damien Faivre. „Unsere Studie klärt diese Frage nun.“ Die Antwort passt auch zu dem, was der Lebensraum der Bakterien erwarten lässt: In dem sauerstoffarmen Milieu, in dem die Mikroben sich tummeln, liegt Eisen vor allem in der weniger stark oxidierten Form, also als Eisen-II, vor.

Ansprechpartner
Dr. Damien Faivre
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9405
E-Mail: Damien.Faivre@­mpikg.mpg.de
Dr. Jens Baumgartner
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9428
E-Mail: jens.baumgartner@­mpikg.mpg.de
Katja Schulze
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9203
Fax: +49 331 567-9202
E-Mail: katja.schulze@­mpikg.mpg.de
Originalpublikation
Marina I. Siponen, Pierre Legrand, Marc Widdrat, Stephanie R. Jones, Wei-Jia Zhang, Michelle C. Y. Chang, Damien Faivre, Pascal Arnoux und David Pignol
Structural insight into magnetochrome-mediated magnetite biomineralization
Nature, online veröffentlicht 6. Oktober 2013; doi: 10.1038/nature12573
Jens Baumgartner, Guillaume Morin, Nicolas Menguy, Teresa Perez Gonzalez, Marc Widdrat, Julie Cosmidis und Damien Faivre
Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr)oxide intermediates

PNAS, 10. September 2013; doi: 10.1073/pnas.1307119110

Dr. Damien Faivre | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7571584/magnetotaktisch_biomineralisation_magnetit_nanopartikel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise