Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Maßgeschneiderter Diamant für die kontinuierliche Photokatalyse zur Umwandlung von CO₂

19.09.2016

Fraunhofer ICT-IMM koordiniert eine nationale Forschungskooperation zur Entwicklung eines Mikroreaktorsystems für die umweltfreundliche Nutzbarmachung von CO₂ mit Hilfe von Sonnenlicht.

Kohlendioxid (CO₂), Methan und Stickoxide – allesamt Treibhausgase, die im Verdacht stehen für die globale Erwärmung mitverantwortlich zu sein. Mit fast Dreivierteln davon stellt Kohlendioxid den maßgeblichen Anteil an den Emissionen.


Obwohl der Kohlenstoffkreislauf bei der Verwendung von Biomasse zur Energieerzeugung weitgehend geschlossen ist, ist die Nutzbarmachung des entstehenden CO₂ eine hochaktuelle gesellschaftspolitische Fragestellung. Gelingt diese, insbesondere unter Verwendung alternativer Energieformen wie z. B. Windenergie, Wasserkraft oder Sonnenenergie, verbessert das die Ökobilanz nachhaltig.

Die Natur als Vorbild

Im Rahmen des Projektes CarbonCat sollen wichtige Erkenntnisse zur Beantwortung dieser Fragestellung gewonnen werden. Zum Einsatz kommen dabei Hochleistungs-LEDs in Kombination mit der gezielten Umsetzung von CO₂ auf Basis eines neuartigen, überwiegend Kohlenstoff-basierenden Photokatalysatorsystems, das in einem mikrostrukturierten Reaktorsystem zum Einsatz kommen soll.

Auf lange Sicht will das Konsortium aus dem Fraunhofer ICT-IMM, der Julius-Maximilians-Universität Würzburg und dem Unternehmen Sahlmann Photochemical Solutions dem Beispiel der natürlichen Photosynthese durch ausschließliche Nutzung von Sonnenlicht technologisch möglichst nahe kommen.

“Wir haben in diesem richtungsweisenden Projekt die Möglichkeit, die natürliche Photosynthese in einem technischen System nachzuempfinden. Anstelle von Pflanzenzellen mit ihren photosynthetisch aktiven Chloroplasten, verwenden wir einen neu entwickelten Mikroreaktor, der den Diamant-Photokatalysator als photoaktives Zentrum enthält.

Der besondere Aufbau des Mikroreaktors ermöglicht eine kontinuierliche Durchmischung von CO₂ und Wasser bei Bestrahlung mit sichtbarem Licht”, erklärt Thomas Rehm, Senior Scientist am Fraunhofer ICT-IMM und Koordinator des Verbundprojektes.

Innovatives Katalysatorsystem ins richtige Licht setzen

Das Projekt CarbonCat soll beweisen, dass es möglich ist, unter naturnahen Bedingungen CO₂ in wertvolle chemische C1- Bausteine wie Methanol umzuwandeln.

Für Anke Krüger, Professorin für Organische Chemie an der Julius-Maximilians-Universität Würzburg, heißt dies “dass neben der technologischen Seite die chemische Optimierung von Diamant als Photokatalysator eine Schlüsselrolle einnimmt. Die gezielte Funktionalisierung von Diamantoberflächen mit komplexen organischen Bausteinen ist nicht trivial, vor allem hinsichtlich der Langzeitstabilität zur Nutzung in einem kontinuierlichen Prozess, wie wir es in dem Mikroreaktor beabsichtigen zu tun.”

Neben der Reaktortechnologie und den katalytisch aktiven Oberflächen sind sowohl die Auswahl und die Mischung der benötigten Wellenlängen als auch die Anordnung der LEDs von entscheidender Bedeutung. „Dem Zusammenspiel zwischen Lichtquelle und den anderen Komponenten des Systems gilt große Aufmerksamkeit. Dies ist für den photokatalytischen Prozess von ebenso großer Bedeutung wie für die Gesamteffizienz des Reaktors“, so Benjamin Sahlmann, der als freiberuflicher Chemiker unter der Bezeichnung Sahlmann Photochemical Solutions tätig ist.

„Mit den Erkenntnissen aus CarbonCat hoffen wir in Zukunft, einen Beitrag zur Verringerung der Umweltfolgen aus dem vorhandenen CO₂-Ausstoß leisten zu können“, resümiert Thomas Rehm.

Das nationale Verbundprojekt CarbonCat wird im Rahmen der Fördermaßnahme CO₂Plus des Bundesministeriums für Bildung und Forschung gefördert. Die Projektpartner erhalten für eine Projektdauer von 3 Jahren insgesamt eine Förderung von ca. 1,34 Millionen €.

Der Beitrag der Projektpartner

Das Fraunhofer ICT-IMM wird basierend auf seiner Expertise in der Entwicklung und Erprobung von mikrostrukturierten Reaktoren eine kontinuierlich betriebene Reaktoranlage verwirklichen, deren Kern der neuartige Diamant-Photokatalysator sein wird. Die physikalische Adaption des im Mikroreaktor eingesetzten Diamantmaterials sowie die eingehende Untersuchung des photokatalytischen Prozesses im kontinuierlichen Betrieb sind ebenfalls Aufgaben des ICT-IMM.

Die Arbeitsgruppe von Prof. Krüger an der Julius-Maximilians-Universität Würzburg beschäftigt sich seit mehr als 10 Jahren mit der Herstellung, Charakterisierung und Anwendung nanoskaliger Kohlenstoffmaterialien, insbesondere Diamant. Die von der Arbeitsgruppe entwickelten Methoden zur besonders stabilen Anknüpfung von Funktionsmolekülen an Diamantüberflächen werden in CarbonCat eingesetzt, um das Diamantmaterial für seinen Einsatz als Photokatalysator im Mikroreaktor zu optimieren.

Sahlmann Photochemical Solutions wird im Rahmen von CarbonCat die Lichtquellen für die Photokatalyse in den Reaktionssystemen entwickeln. Eine maßgeschneiderte Herstellung der benötigten Lichtquellen und deren spektrale Vermessung ist ebenso Aufgabe wie die Bewertung der Lichtquellen hinsichtlich der Gewährleistung der Arbeitssicherheit.

Dr. rer. nat. Thomas Rehm | Fraunhofer ICT-IMM
Weitere Informationen:
http://www.imm.fraunhofer.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise