Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Massgeschneiderte Schutzkleidung für bedrohte Zellen

31.05.2011
Wenn Zellen durch Giftstoffe verletzt werden, setzen sie einen raffinierten Reparaturmechanismus in Gang. Dieser produziert eine Art massgeschneiderte Schutzkleidung, wie Forschende des Instituts für Anatomie der Universität Bern herausgefunden haben. Die Studie ist nun in der Fachzeitschrift « Journal of Biological Chemistry» erschienen.

Körperzellen, deren Hülle oder Zellmembran beschädigt wird, verlieren ihren Inhalt und gehen in der Regel zugrunde. Wird der Schaden durch bakterielle Giftstoffe ausgelöst, verfügt die Zelle jedoch über einen ausgeklügelten Reparatur-mechanismus. Dabei spielen sogenannte Annexine – Calcium-bindende Proteine – eine wichtige Rolle.

Je nach Art der Verletzung geben sie der Zelle den jeweils passenden Schutz. Dies hat ein Team um Prof. Dr. Annette Draeger von der Abteilung Zellbiologie des Instituts für Anatomie der Universität Bern herausgefunden. Die Ergebnisse der Studie wurden in der Fachzeitschrift «Journal of Biological Chemistry» publiziert.

Attacke in Zellkultur nachgestellt

Strukturelle Schäden können an vielen Körperzellen auftreten. Sie werden entweder durch immunologische Reaktionen ausgelöst (zum Beispiel in Immunzellen), sind mechanisch bedingt (zum Beispiel in Muskelzellen) oder werden durch bakterielle Giftstoffe verursacht – was in allen Zellen möglich ist. Diese Toxine, die von Streptokokken oder anderen Bakterien gebildet werden, bohren Löcher in die Zellmembran. Durch die Löcher strömt Calcium ein und aktiviert Enzyme, die den Körperinhalt verdauen und die Zelle damit töten. Bakterielle Giftstoffe fügen zum Beispiel den Zellen der Atemwege grosse Schäden zu und können Krankheiten wie eine Mandel- oder Lungenentzündung verursachen.

Da Schäden oder Risse der Zellmembran schnell repariert werden müssen, besitzen die meisten Körperzellen Reparaturmechanismen. Die Forschenden um Annette Draeger stellten in einer Zellkultur eine Attacke nach, indem sie Zellen mit einem Bakterientoxin behandelten. Sie beobachteten, dass Annexine in die Richtung des Zellschadens wandern und die Verletzung schliessen. Je nachdem wie gross die Öffnung ist, oder wie lange der Angriff dauert, begeben sich – angelockt vom einströmenden Calcium – mehr und mehr Annexine an die beschädigte Zellmembran.

Die Annexine sind fähig, dort entweder die Verletzung auszuschneiden und aus der Zelle abzuwerfen oder den gefährdeten Teil der Zelle abzuschnüren und zu isolieren, um den Zellkörper und den Zellkern zu retten. Sie können entweder sofort eingreifen und kleinere Löcher «stopfen», oder bei ausgedehnten Verletzungen gezielt zusammenarbeiten. «Die Annexine schneidern der bedrohten Zelle einen Schutzanzug auf Mass», umschreibt Annette Draeger den Vorgang. Für die angewandte Forschung seien die Kenntnis über solche Mechanismen wichtig, da Schäden an der Zellmembran zum Beispiel bei bakteriellen Infekten sehr häufig auftreten können.

Quellenangabe:
Sarah Potez, Miriam Luginbühl, Katia Monastyrskaya, Andrea Hostettler, Annette Draeger, and Eduard B. Babiychuk: Tailored Protection against Plasmalemmal Injury by Annexins

with Different Ca2+ Sensitivities, Journal of Biological Chemistry, Vol. 286, Nr. 20, S. 17982-17991, 20. Mai 2011, doi: 10.1074/jbc.M110.187625

Nathalie Matter | Universität Bern
Weitere Informationen:
http://www.unibe.ch

Weitere Berichte zu: Anatomie Annexine Calcium Draeger Giftstoff Körperzelle Schutzkleidung Zelle Zellkultur Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht UVB-Strahlung beeinflusst Verhalten von Stichlingen
13.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Mikroorganismen auf zwei Kontinenten studieren
13.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften