Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Maßgeschneiderte optische Materialien aus DNA: Nanopartikel modifizieren Licht

15.03.2012
Im menschlichen Körper trägt ein Doppelstrang aus Desoxyribonukleinsäure-Bausteinen, die sogenannte DNA, die Erbinformation.

Aus künstlichen DNA-Molekülen hat nun ein von Wissenschaftlern des Exzellenzclusters Nanosystems Initiative Munich geleitetes internationales Team nanostrukturierte Materialien hergestellt, mit denen sie maßgeschneidert sichtbares Licht modifizieren können. Ihre Ergebnisse präsentieren die Forscher in der aktuellen Ausgabe des renommierten Fachmagazins „Nature“.


Rechts- und linksgängige Nano-Wendeltreppen modifizieren zirkular polarisiertes Licht unterschiedlich. Bild: Tim Liedl / LMU

Als vor einigen Jahren die Technik des DNA-Origami entdeckt wurde, war die Begeisterung groß. Mit dieser Technik konnten die Wissenschaftler gezielt Nanoteilchen mit definierter Form und Größe bauen.

Doch echte Anwendungsmöglichkeiten, wie etwas Nanopinzetten, schienen bisher in weiter Ferne zu liegen. Einem internationalen Team unter der Führung von Professor Tim Liedl, Ludwig-Maximilians-Universität München und Professor Friedrich Simmel, Technische Universität München, gelang es nun, aus DNA-Bausteinen optisch aktive Nanoteilchen zu bauen, die für die gezielte Modifikation von Licht genutzt werden könnten.

Die Kopplung von Licht und Nanostrukturen könnte helfen, optische Sensoren für Medizin und Umwelttechnik um ein Vielfaches kleiner und empfindlicher zu machen. Doch, im Vergleich zu den nur wenige Nanometer großen Nanostrukturen, ist eine Lichtwelle mit ihrer Wellenlänge zwischen 400 und 800 Nanometern geradezu riesig. Wirken kleinste Strukturen aber in einer ganz bestimmten Art und Weise zusammen, können theoretisch auch kleine Objekte sehr gut mit Licht in Wechselwirkung treten. Mit herkömmlichen Methoden war es aber nicht möglich, solche dreidimensionalen Strukturen mit Nanometer-Präzision in genügender Menge und Reinheit herzustellen.

„Mit dem DNA-Origami haben wir nun eine Methode gefunden, die alle diese Anforderungen erfüllt. Sie erlaubt es uns, die dreidimensionale Form des entstehenden Objekts auf den Nanometer genau vorherzubestimmen“, sagt Professor Friedrich Simmel, Inhaber des Lehrstuhls für Biomolekulare Systeme und Bionanotechnologie an der TU München. „Allein programmiert durch die Abfolge der Grundbausteine, falten sie sich die Nanobausteine von alleine zu den gewünschten Strukturen.“ Dem Team um Friedrich Simmel gelang es, Nano-Wendeltreppen mit einer Stockwerkshöhe von 57 Nanometern und einen Durchmesser von 34 Nanometern herzustellen, an die in regelmäßigen Abständen Goldpartikel mit einem Durchmesser von zehn Nanometern angehängt sind.

An der Oberfläche der Goldpartikel reagieren die Elektronen mit dem elektromagnetischen Feld des Lichts. Der geringe Abstand der Partikel sorgt dabei dafür, dass die Goldpartikel eines DNA-Strangs zusammenwirken und die Wechselwirkungen um ein Vielfaches verstärken. Professor Alexander O. Govorov, theoretischer Physiker an der Ohio University in Athens, USA, hatte vorausgesagt, dass der Effekt von Abstand, Größe und Beschaffenheit der Metallpartikel abhängen sollte. Mit Hilfe der DNA-Origami-Methode bauten die Münchener Physiker daher Nanostrukturen auf, bei denen sie diese Parameter variierten.

Die Ergebnisse dieser Experimenten bestätigten die Voraussagen ihrer Kollegen voll und ganz: Wässrige Lösungen von Nano-Wendeltreppen mit Rechts- und mit Linksgewinde unterscheiden sich sichtbar in ihrer Wechselwirkung mit zirkular polarisiertem Licht. Wendeltreppen mit größeren Partikeln zeigen eine deutlich stärkere optische Antwort als solche mit kleineren. Großen Einfluss hat auch die chemische Zusammensetzung der Partikel: Überzogen die Physiker die Goldpartikel mit einer zusätzlichen Silberschicht, so verschob sich die optische Resonanz vom roten in den kurzwelligeren blauen Bereich.

Im Zusammenspiel zwischen den theoretischen Berechnungen und den Möglichkeiten des DNA-Origami sind die Wissenschaftler nunmehr in der Lage nano-optische Materialien mit genau spezifizierbaren Eigenschaften herzustellen. Wohin ihre Forschung in Zukunft führen könnte, erklärt Professor Tim Liedl: „Wir werden jetzt untersuchen, ob wir mit dieser Methode auch den Brechungsindex der von uns hergestellten Materialien beeinflussen können. Materialien mit negativem Brechungsindex könnten zum Beispiel für die Entwicklung neuartiger optischer Linsensysteme, sogenannter Superlinsen, genutzt werden.“

Die Arbeiten wurden gefördert aus Mitteln der Volkswagen Stiftung, der Deutschen Forschungsgemeinschaft (Exzellenzcluster Nanosystems Initiative Munich, NIM) und der National Science Foundation (NSF, USA).

Publikation:

DNA-based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response. Anton Kuzyk, Robert Schreiber, Zhiyuan Fan, Günther Pardatscher, Eva-Maria Roller, Alexander Högele, Friedrich C. Simmel, Alexander O. Govorov und Tim Liedl.

Nature, Vol. 482, 7389, pp 311-314 DOI: 10.1038/nature10889

Kontakt:

Prof. Dr. Friedrich C. Simmel
Biomolekulare Systeme u. Bionanotechnologie
Technische Universität München
Am Coulombwall 4a
85748 Garching, Germany
Tel.: +49 89 289 11611
Fax: +49 89 289 11612
E-Mail: simmel@tum.de
Prof. Dr. Tim Liedl
Department für Physik - Lehrstuhl Rädler
Ludwig-Maximilians-Universität
Geschwister-Scholl-Platz 1
80539 München, Germany
Tel: +49 89 2180 3725
Fax: +49 89 2180 3182
E-Mail: tim.liedl@physik.lmu.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.e14.ph.tum.de/
http://tinyurl.com/86d793e

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Elektrisch leitende Hülle für Bakterien
29.06.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Designte Proteine gegen Muskelschwund
29.06.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Designte Proteine gegen Muskelschwund

29.06.2017 | Biowissenschaften Chemie

Benzin und Chemikalien aus Pflanzenresten

29.06.2017 | Biowissenschaften Chemie

Hochleitfähige Folien ermöglichen großflächige OLED-Beleuchtung

29.06.2017 | Energie und Elektrotechnik