Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Massenspektrometrie-Verfahren vereinfacht Proteom-Forschung

31.05.2011
Max-Planck-Forscher analysieren Proteine und andere Makromoleküle in noch nie dagewesener Flexibilität und Empfindlichkeit

Seit der Veröffentlichung des ersten menschlichen Genoms vor zehn Jahren sind nur wenige größere technologische Veränderungen in der Biochemie hinzu gekommen, die die Untersuchung von Proteinen im Routinealltag verändert hätten.


Dank neuer Methoden für die Massenspektrometrie können Proteine aus kompletten Zellextrakten quantifiziert werden, ohne dass diesegereinigt, aufgetrennt oder mit Isotopen markiert werden müssen. Oben im Bild befindet sich der Hochdruck-Flüssigkeitschromatograf, unten das Massenspektrometer. © MPI f. molekulare Genetik

Deshalb kann das große Potenzial der Genomanalyse oft noch nicht genutzt werden. So sind im täglichen Laborleben die Wissenschaftler meist auf eine über 30 Jahre alte Technologie angewiesen, um die Funktion und Konzentration eines Proteins in Zellen zu untersuchen, den so genannten Westernblot. Dies wird sich nun möglicherweise ändern, denn Forscher vom Max-Planck-Institut für molekulare Genetik in Berlin haben einen praxistauglichen Arbeitsablauf für die so genannte Massenspektrometrie vorgestellt, der den Westernblot ersetzen könnte.

Mit der Massenspektrometrie kann die chemische Zusammensetzung von Substanzen analysiert werden. Die Moleküle werden dabei elektrisch geladen und in einem elektrischen Feld nach ihren Massen getrennt. Seit den 1990er Jahren wird die Technik auch zur Untersuchung von Proteinen eingesetzt. Der Vorteil: Die Wissenschaftler benötigen keine Antikörper wie beim klassischen Westernblot und sie können viele Proteine auf einmal, genauer und quantitativ analysieren.

Die Max-Planck-Wissenschaftler haben jetzt ein zuverlässiges und ein einfach zu handhabendes Verfahren entwickelt, um Proteine im Massenspektrometer zu analysieren ohne sie vorher reinigen zu müssen. Sie benutzen dazu einen besonders empfindlichen Triple-Quadrupol-Massenspektrometer, der an einen Hochdruck-Flüssigkeitschromatografen gekoppelt ist. „Mit unserem Verfahren können wir Protein-Mengen zwischen 500 und einer Million Moleküle pro Zelle quantifizieren – ein viel weiterer Bereich als beim traditionellen Westernblot. Die Proben müssen dafür nicht langwierig vorbereitet werden und wir müssen sie nicht mit teuren Isotopen markieren“, erklärt Markus Ralser vom Max-Planck-Institut für molekulare Genetik. Stattdessen nutzen die Wissenschaftler bereits bekannte Proteine der Zelle zur Eichung ihrer Methode. Deren Konzentration ist bekannt und dient als Referenz für die zu untersuchenden Proteine.

Dadurch ist die neue Methode einfacher und vielseitiger als andere Massenspektrometrie-Prozeduren. Um zwei Proben miteinander vergleichen zu können, müssen Forscher beispielsweise bei der so genannten SILAC-Methode diese mit schweren Stickstoff- oder Kohlenstoff-Atomen markieren, so genannten Isotopen. Durch den Massenunterschied können die Analyten im Massenspektrometer voneinander getrennt und die eventuell unterschiedliche Konzentration eines Proteins gemessen werden. Diese Isotopenmarkierung ist teuer und kann nur bei Zellen angewandt werden, für die entsprechende Referenzmaterialien zur Verfügung stehen. Die Zellen werden nämlich mit den Isotopen „gefüttert“ und nehmen sie über ihren normalen Stoffwechsel auf. Für die Zellen mancher Organismen ist das bislang überhaupt noch nicht möglich, oder mit sehr großen Kosten- und Zeitaufwand verbunden.

In Zukunft könnte die relative Proteinquantifizierung mittels Massenspektrometrie die klassischen Methoden der Proteinanalytik ersetzen. Denn bei einem Westernblot wird ein Proteinextrakt aufgetrennt, auf eine Membran übertragen und mittels eines Antikörpers nachgewiesen. Diese Antikörper müssen aufwändig hergestellt werden und sind deshalb ebenfalls teuer. Zudem werden in vielen Fällen Versuchstiere zur Herstellung der Antikörper verwendet. Zu den ethischen und wirtschaftlichen Schwierigkeiten kommen noch technische Einschränkungen dazu. So lassen sich nur für einen Teil der Proteine Antikörper herstellen, nicht jedes Protein kann deshalb mittels Westernblot untersucht werden. Außerdem können Westernblots Protein-Mengen nur schlecht quantifizieren. Zudem kann in der Regel nur ein Protein in einer Messung untersucht werden. Viele aktuelle Fragestellungen der heutigen Biologie können aber nur beantwortet werden, wenn mehrere Proteine gleichzeitig quantitativ wie bei der Massenspektrometrie untersucht werden.

Proteine haben eine Fülle von Aufgaben im Organismus: Sie wandeln beispielsweise Stoffwechselprodukte ineinander um und gewinnen dabei Energie, sie kopieren und reparieren die Erbsubstanz DNA, sie schreiben die DNA in RNA um und produzieren so neue Proteine. Die Gene stellen also die Blaupausen eines Organismus dar, die Proteine sind ihre Werkzeuge, mit denen ein Organismus aufgebaut wird. Wissenschaftler wollen deshalb den gesamten Protein-Bestand einer Zelle aufklären. „Wenn wir das Protein-Arsenal einer Zelle kennen, wissen wir möglicherweise noch genauer über ihre Funktionsweise Bescheid als mit den Informationen aus den Genen alleine“, sagt Markus Ralser. Auch die Ursachen von Krankheiten lassen sich so besser verstehen.

Ansprechpartner
Dr. Patricia Marquardt
Max-Planck-Institut für molekulare Genetik, Berlin
Telefon: +49 30 8413-1716
Fax: +49 30 8413-1671
E-Mail: patricia.marquardt@molgen.mpg.de
Originalveröffentlichung
Katharina Bluemlein and Markus Ralser
Next-generation SDS-PAGE/westernblots: Monitoring protein expression in whole-cell extracts by targeted label- and standard-free LC-MS/MS

Nature Protocols, 27. Mai 2011, online veröffentlicht

Dr. Patricia Marquardt | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4328122/proteom

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von Hefe für Demenzerkrankungen lernen
22.02.2018 | Heinrich-Heine-Universität Düsseldorf

nachricht Rettender Ritter in goldener Rüstung
22.02.2018 | Exzellenzcluster Entzündungsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics