Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Maskierte Schimmelpilzgifte

26.02.2013
Ein wichtiger Forschungserfolg für die Lebensmittelsicherheit: An der TU Wien ist es gelungen, jene Stoffwechselprodukte im Labor herzustellen, die Pflanzen, Tiere und Menschen aus Schimmelpilzgiften erzeugen.

Ob wir wollen oder nicht: Getreideprodukte, die wir tagtäglich zu uns nehmen, enthalten Schimmelpilzgifte, sogenannte Mykotoxine. Für die Messung ihrer Konzentration gibt es bereits etablierte Tests. Im Stoffwechsel werden die Toxine allerdings teilweise chemisch verändert, sodass sie bei Routineanalysen unerkannt bleiben.

An der TU Wien ist es nun gelungen, diese sogenannten „maskierten Mykotoxinie“ im Labor zu synthetisieren. Nur dadurch erhält man ausreichende Mengen an Referenzmaterial um die Giftstoffe genauer untersuchen zu können und Nachweismethoden für sie zu entwickeln. Wichtig ist das nicht nur für die Lebensmittelsicherheit, sondern auch für die Agrarwissenschaften und die Toxikologie dieser Verbindungen.

Gift wird im Stoffwechsel verändert

„Sowohl Pflanzen als auch Tiere und Menschen haben die Fähigkeit, Schimmelpilzgifte im Zuge des Fremdstoffmetabolismus biochemisch zu verändern. Zum Beispiel indem an die Mykotoxine Zucker wie Glucose oder Glucuronsäure angehängt werden“, sagt Hannes Mikula. So entstehen die sogenannten „maskierten“ oder „konjugierten Mykotoxine“. Die Giftstoffe werden dabei aber nicht zerstört und können daher wieder in die ursprüngliche Form zurückgewandelt werden, nachdem sie mit der Nahrung aufgenommen worden sind.

Die Stoffwechselprodukte, die der Mensch aus den Schimmelpilzgiften erzeugt, beispielsweise sogenannte Glucuronide, sind von ganz besonderem Interesse: Da sie über den Urin ausgeschieden werden, lässt sich durch die Bestimmung dieser sogenannten Biomarker feststellen, wie viel Schimmelpilzgift eine Person insgesamt über die Nahrung aufgenommen hat.

Mehr Gift für die Forschung: Künstliche Herstellung statt Gewinnung aus der Natur

Um die maskierten Schimmelpilzgifte zu analysieren und um ihre Giftigkeit untersuchen zu können, müssen sie in größeren Mengen zur Verfügung stehen. „Die maskierten Mykotoxin-Konjugate werden einerseits als Referenzmaterialien in der Bioanalytik und andererseits auch für toxikologische Untersuchungen verwendet“, erklärt Hannes Mikula. Dafür lassen sich aus dem Urin keine ausreichend großen Mengen an humanen Stoffwechselprodukten isolieren - zur Synthese im Labor gibt es daher keine Alternative.

Synthesemethoden entwickelt

Schwierig ist die synthetische Herstellung dieser Substanzen nicht zuletzt deshalb, weil die Zuckerverbindungen, mit denen man es hier zu tun hat, an vielen unterschiedlichen Reaktionen beteiligt sein können. „Mit Hilfe von Modell-Molekülen, die sich ähnlich verhalten wie die entsprechenden Mykotoxine, aber leichter und billiger herzustellen sind, konnten wir im Laufe der letzten Jahre optimierte Synthesemethoden für unterschiedliche Zielverbindungen erarbeiten“, berichtet Hannes Mikula. Nun können viele Milligramm oder sogar Gramm der gewünschten Substanzen innerhalb von wenigen Tagen hergestellt werden – in pharmakologischen Maßstäben eine beträchtliche Menge.

Die Welt der Zucker

„Ganz bewusst wollten wir nicht bloß ein bestimmtes Produkt synthetisieren, sondern möglichst viel über die Synthesechemie von derartigen Zuckerverbindungen lernen“, sagt Hannes Mikula. Die Forschungsergebnisse sind für mehrere Schimmelpilzgifte anwendbar. Auch in vielen anderen Forschungsgebieten spielt die Zuckerchemie (Glykochemie) eine ganz entscheidende Rolle, etwa bei der Diagnose von Stoffwechselerkrankungen bei Neugeborenen oder bei der Suche nach Krebs-Zellen. Auch auf diesen Gebieten forscht das Team rund um Hannes Mikula bereits an der TU Wien.

Hannes Mikula wird demnächst seine Dissertation in der Forschungsgruppe von Prof. Johannes Fröhlich abschließen (Arbeitsbereich: „Health & Environment“). Dieses Forschungsteam hat sich in den letzten Jahren unter anderem auch ganz besonders auf das Thema Zucker fokussiert. Eine wichtige Rolle spielen dabei auch Studierende des Doktoratsprogrammes „Applied Bioscience Technology“. „Glykochemie ist mit Sicherheit ein kompliziertes Forschungsgebiet, sowohl theoretisch wie auch praktisch. Aber es ist eben auch eines, das ein besonders breites Spektrum an Anwendungen eröffnet“, meint Mikula. Das Team pflegt enge Kooperationen mit vielen anderen Forschungseinrichtungen, unter ihnen die Universität für Bodenkultur, das IFA-Tulln , die Medizinische Universität Wien und das Austrian Institute of Technology (AIT).

Best Paper Award

Hannes Mikula erhielt für seine Forschung im Jahr 2011 bereits den Theodor Körner Preis, nun wurde seine Arbeit erneut ausgezeichnet: Das Fachjournal „World Mycotoxin Journal“ prämiert jedes Jahr die beste wissenschaftliche Publikation des Jahres. Aus den Veröffentlichungen des Jahres 2012 wurde nun die Arbeit von Hannes Mikula und seinen KollegInnen mit dem „Best Paper Award“ prämiert.

Rückfragehinweis:
Dipl. Ing. Hannes Mikula
Institut für Angewandte Synthesechemie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: 0699-11625800
hannes.mikula@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie