Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Markierungen an Histonen kontrollieren Entwicklung

18.02.2013
Auf genetischer Ebene sind die Zellen von Tieren und Pflanzen echte Alleskönner, da jede Zelle eine vollständige Kopie des genetischen Materials des Organismus enthält. Davon wird aber – je nach Zelltyp und Entwicklungsstand – nur ein geringer Teil genutzt und aktiviert.

Wissenschaftler des MPI für Biochemie haben nun nachgewiesen, wie die Genaktivität in den einzelnen Zellen während der Entwicklung von Tieren reguliert wird. Mit ihren aktuellen Ergebnissen konnten die Forscher zeigen, dass chemische Markierungen an Histonen bestimmen, ob ein Gen aktiv ist oder nicht. Histonen sind universell vorhandene Proteinkomplexe, um die das genetische Material, die DNA, gewickelt ist.


Zellen, denen das Enzym PRC2 fehlt (oben) oder Zellen, die ein verändertes Histon besitzen, das nicht mehr chemisch markiert werden kann (unten), zeigen denselben Effekt: ein Gen, das normalerweise stillgelegt sein sollte, wird aktiv (rotes Signal). In den umgebenden Wildtypzellen, welche grün markiert sind, bleibt das Gen inaktiv.
Bild: Ana R. Pengelly/ Copyright: MPI für Biochemie

Die DNA jedes Gens im Zellkern von Tieren und Pflanzen ist verpackt mit Histonproteinen und gleicht einer Perlenkette. Jede dieser Perlen besteht aus einem Komplex aus Histonproteinen, um welche die DNA gewickelt ist. Diese Struktur wird Nukleosom genannt. Viele Proteine, die die Aktivität von Genen regulieren, verändern die Nukleosomen an diesen Genen, indem sie kleine chemische Markierungen an bestimmte Stellen der Histonproteine anfügen. Allerdings fügen die gleichen Proteine diese chemischen Markierungen auch an eine Vielzahl anderer Proteine an und bislang war unklar, welche dieser Markierungen letztendlich Einfluss auf die Genaktivität während der Entwicklung von Tieren und Pflanzen nehmen.

Kleiner Anhang – große Wirkung

Die Wissenschaftler in der Forschungsgruppe „Chromatin-Biologie“ von Jürg Müller haben sich jetzt eine bestimmte Markierung an Histonen näher angeschaut, die von dem Enzym Polycomb Repressive Complex 2 (PRC2) angefügt wird. Polycomb-Proteine wie PRC2 halten Gene, welche die Entwicklung von Tieren und Pflanzen steuern, inaktiv. PRC2 stellt so sicher, dass diese Gene nur in den richtigen Zellen und zum richtigen Zeitpunkt aktiv sind.

Um die Rolle von PRC2 und seiner Histon-Markierung zu untersuchen, verwendeten die Wissenschaftler am MPI für Biochemie die Fruchtfliege Drosophila als Modellorganismus. Die Forscher veränderten die Fliegen so, dass sie in ihren Zellen Histone herstellten, an die PRC2 die chemische Markierung nicht mehr anfügen konnte. Es zeigte sich, dass in diesen Zellen die gleichen Gene aktiv werden, die auch beim Fehlen von PRC2 aktiv werden.

„Unsere Beobachtungen zeigen, dass der entscheidende Schritt die Markierung an den Histonen ist und nicht an irgendeinem der anderen Proteine in der Zelle, die auch von PRC2 modifiziert werden“, sagt die Doktorandin Ana Pengelly, die die Versuche durchführte. Ihr Kollege Omer Copur fügt hinzu: “Unser Versuchsansatz erlaubt uns, jetzt auch die Funktion von anderen chemischen Markierungen an Histonen zu untersuchen.“ Weiterführend zu ihren Ergebnissen über PRC2 wollen die Forscher in Zukunft herausfinden, wie genau die Histon-Markierungen die Perlenkettenstruktur der DNA verändern und so die Aktivität von Genen kontrollieren.

Originalpublikation
Pengelly, A.R., Copur, O., Jäckle, H., Herzig, A. and Müller, J.: A histone mutant reproduces the phenotype caused by loss of histone modifying factor Polycomb. Science, February 8, 2013.

DOI: 10.1126/science.1231382

Kontakt
Dr. Jürg Müller
Chromatin-Biologie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: muellerj@biochem.mpg.de
www.biochem.mpg.de/mueller
Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel.: +49 (0) 89 8578-2824
E-Mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Weitere Informationen:
http://www.biochem.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops