Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Mangan zum Photosyntheseapparat gelangt - Existenz zellulärer Biogenese-Zentren erstmals bewiesen

08.02.2012
Ohne Mangan geht bei der Photosynthese nichts - das Metall ist ein unverzichtbarer Bestandteil des Photosystems, da es die Erzeugung von chemischer Energie und die Synthese von Luftsauerstoff katalysiert. Bisher war unklar, wie das Mangan an seinen Einsatzort in der Zelle gelangt.

Wissenschaftler um Professor Jörg Nickelsen vom Biozentrum der LMU identifizierten nun ein Protein, das als Shuttle fungiert und Mangan auf das Photosystem überträgt. Damit konnten die Wissenschaftler das Wissen über die komplexen Vorgänge bei der Photosynthese um eine weitere Facette erweitern - langfristig könnten ihre Ergebnisse dazu beitragen, künstliche Photosysteme zu entwickeln, mit denen umweltfreundlichere Treibstoffe wie etwa Wasserstoff hergestellt werden könnten.

Zudem gelang es den Forschern, erstmals die Existenz sogenannter Biogenesezentren nachzuweisen: In diesen speziellen Zellregionen werden frühe Vorstufen des Photosystems zusammengebaut und erst danach an ihren eigentlichen Bestimmungsort transportiert. Auch die Mangan-Übertragung auf das Photosystem findet hier statt. (Plant Cell, 7.2.2012)

Pflanzen, Algen und einige Bakterien betreiben Photosynthese, um mithilfe von Sonnenlicht Energie und Kohlenhydrate zu gewinnen. Ohne die Photosynthese wäre das Leben auf der Erde - so wie wir es kennen - unmöglich, da dieser Prozess auch den von fast allen Organismen benötigten Luftsauerstoff produziert. Das für die Photosynthese benötigte Sonnenlicht wird von sogenannten Photosystemen aufgenommen, die in einem speziellen Membransystem - den Thylakoidmembranen - sitzen und neben lichtabsorbierenden Chlorophyllen auch eine Reihe verschiedener Proteine beinhalten. Einer dieser Multiproteinkomplexe - das Photosystem II - enthält zudem das Metall Mangan. Mangan ist ein für alle Lebewesen essentielles Element, das eine der bemerkenswertesten Reaktionen in der Natur katalysiert: Die Spaltung von Wasser, die unter anderem zur Freisetzung atmosphärischen Sauerstoffs führt. Der Zusammenbau des Photosystems erfolgt, indem wie am Fließband schrittweise die einzelnen Komponenten zusammengefügt werden. Dazu werden eine Reihe von Hilfsfaktoren benötigt. Wie und wo das Mangan in das Photosystem II eingebaut wird, war bisher unbekannt. In ihrer neuen Studie nutzten die Wissenschaftler das Cyanobakterium Synechocystis als Modell und konnten nachweisen, dass das Hilfsprotein PratA dabei eine wesentliche Rolle spielt, indem es Mangan bindet und wie ein Shuttle zum Photosystem II transportiert.

Interessanterweise findet die Übertragung des Mangans allerdings nicht direkt in der Thylakoidmembran statt, sondern in speziellen Zellregionen, die die zellinterne Thylakoidmembran mit der die Zelle umgebenden Plasmamembran verbinden. „Die Existenz dieser sogenannten Biogenesezentren wurde in den letzten Jahren bereits vermutet und konnte nun von uns erstmals belegt werden“, sagt Nickelsen. In den Biogenesezentren werden frühe Vorstufen des Photosystems II zusammengebaut und anschließend an ihren eigentlichen Wirkort in der Thylakoidmembran transportiert. „Erste Untersuchungen an der Ackerschmalwand Arabidopsis thaliana deuten darauf hin, dass der Mechanismus des Mangan-Transports möglicherweise evolutionär konserviert ist und nicht nur in Cyanobakterien, sondern auch in höheren Pflanzen nach einem ähnlichen Schema abläuft“, erklärt Nickelsen.

Der effiziente Einbau von Mangan in das Photosystem II ist entscheidend für dessen essentielle Funktion bei der Spaltung von Wasser in Sauerstoff, Protonen und chemisch gebundene Elektronen. Protonen und Elektronen lassen sich theoretisch zu Wasserstoff vereinigen. Ein besseres Verständnis dieses Prozesses könnte daher langfristig genutzt werden, um mithilfe künstlicher Photosysteme in chemischen Reaktoren „saubere" Treibstoffe wie etwa Wasserstoff zu erzeugen. Aufgrund der steigenden Nachfrage nach erneuerbaren Energien stellt die effiziente Erzeugung solcher alternativer umweltfreundlicher Biokraftstoffe eine wichtige Herausforderung für die Zukunft dar. (göd)

Publikation:
„Initial Steps in Photoystem II de novo Assembly and Preloading with Manganese Take Place in Biogenesis Centers in Synechocytis”;
A. Stengel, I.L. Gügel, D. Hilger, B. Rengstl, H. Jung, J. Nickelsen;
The Plant Cell, online 7.2.2012

Kontakt:
Prof. Dr. Jörg Nickelsen
Biozentrum der LMU
Tel.: 089 / 2180 – 74773
Fax: 089 / 2180 – 9974773
E-Mail: joerg.nickelsen@lrz.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten